

浏览全部资源
扫码关注微信
北京大学药学院 天然药物及仿生药物全国重点实验室 新基石科学实验室 北京 100191
Received:06 October 2025,
Published Online:16 January 2026,
Published:20 February 2026
移动端阅览
俞亦涵, 赵斌治, 焦宁. 从聚烯烃到小分子化合物的化学转化新进展. 高分子学报, 2026, 57(2), 305-338.
Yu, Y. H.; Zhao, B. Z.; Jiao, N. Recent Advances in the chemical transformation of polyolefins into small molecules. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 305-338.
俞亦涵, 赵斌治, 焦宁. 从聚烯烃到小分子化合物的化学转化新进展. 高分子学报, 2026, 57(2), 305-338. DOI: 10.11777/j.issn1000-3304.2025.25254. CSTR: 32057.14.GFZXB.2025.7509.
Yu, Y. H.; Zhao, B. Z.; Jiao, N. Recent Advances in the chemical transformation of polyolefins into small molecules. Acta Polymerica Sinica (in Chinese), 2026, 57(2), 305-338. DOI: 10.11777/j.issn1000-3304.2025.25254. CSTR: 32057.14.GFZXB.2025.7509.
废弃塑料的回收利用已成为全球关注的问题. 其中,以聚乙烯、聚丙烯、聚苯乙烯和聚氯乙烯为代表的聚烯烃塑料因化学惰性而难以在自然环境中降解,化学回收利用存在巨大挑战性. 本文系统综述了近年来基于碳链断裂实现聚烯烃化学升级回收的研究进展,重点讨论了不同催化体系在调控降解路径与产物选择性方面的作用机制. 通过优化反应条件(如温度控制与催化剂结构设计)以及引入光催化和生物-化学耦合等新兴技术,可以高效地将塑料废弃物转化为高价值化学品,包括烷基芳烃、羧酸、苯甲酸等. 展望未来,亟需开发低成本且高稳定性的催化剂,进一步优化工艺过程,并推动化学回收的规模化应用,从而实现塑料废弃物的可持续管理.
The recycling and high-value utilization of plastic waste have become a global concern. Among them
polyolefin plastics
represented by polyethylene (PE)
polypropylene (PP)
polystyrene (PS)
and poly(vinyl chloride) (PVC)
are particularly challenging to degrade in the natural environment due to their chemical inertness
making chemical recycling highly demanding. This review systematically summarizes recent advances in the chemical upcycling of polyolefins
via
carbon chain cleavage
with a focus on the mechanistic roles of various catalytic systems in directing degradation pathways and product selectivity. By optimizing reaction conditions
such as temperature control and catalyst design
and integrating emerging technologies including photocatalysis and bio-chemical hybrid strategies
plastic waste can be efficiently transformed into high-value chemicals
such as alkyl aromatics
carboxylic acids
and benzoic acid. Looking ahead
there is an urgent need to develop low-cost
highly stable catalysts
further improve process efficiency
and promote the scalable implementation of chemical recycling
thereby enabling the sustainable management of plastic waste.
Geyer R. ; Jambeck J. R. ; Law K. L. Production, use, and fate of all plastics ever made . Sci. Adv. , 2017 , 3 ( 7 ), e 1700782 . doi: 10.1126/sciadv.1700782 http://dx.doi.org/10.1126/sciadv.1700782
The new plastics economy: rethinking the future of plastics . World Economic Forum; Ellen MacArthur Foundation : McKinsey & Company 2016 . doi: 10.1002/j.1941-9635.2017.tb01670.x http://dx.doi.org/10.1002/j.1941-9635.2017.tb01670.x
The new plastics economy: catalysing action . Ellen MacArthur Foundation , 2017 . doi: 10.1002/j.1941-9635.2017.tb01670.x http://dx.doi.org/10.1002/j.1941-9635.2017.tb01670.x
Lacy, R. Global plastics outlook: economic drivers, environmental impacts and policy options . ed. Green Talks LIVE 2022 . doi: 10.1787/de747aef-en http://dx.doi.org/10.1787/de747aef-en
Seewoo B. J. ; Goodes L. M. ; Thomas K. V. ; Rauert C. ; Elagali A. ; Ponsonby A. L. ; Symeonides C. ; Dunlop S. A. How do plastics, including microplastics and plastic-associated chemicals, affect human health? Nat. Med. , 2024 , 30 ( 11 ), 3036 - 3037 . doi: 10.1038/s41591-024-03287-x http://dx.doi.org/10.1038/s41591-024-03287-x
Lee Y. H. ; Zheng C. M. ; Wang Y. J. ; Wang Y. L. ; Chiu H. W. Effects of microplastics and nanoplastics on the kidney and cardiovascular system . Nat. Rev. Nephrol. , 2025 , 21 ( 9 ), 585 - 596 . doi: 10.1038/s41581-025-00971-0 http://dx.doi.org/10.1038/s41581-025-00971-0
Liu X. R. ; Wei W. ; Chen Z. J. ; Wu L. ; Duan H. R. ; Zheng M. ; Wang D. B. ; Ni B. J. The threats of micro- and nanoplastics to aquatic ecosystems and water health . Nat. Water , 2025 , 3 ( 7 ), 764 - 781 . doi: 10.1038/s44221-025-00464-1 http://dx.doi.org/10.1038/s44221-025-00464-1
Ignatyev I. A. ; Thielemans W. ; Vander Beke B. Recycling of polymers: a review . ChemSusChem , 2014 , 7 ( 6 ), 1579 - 1593 . doi: 10.1002/cssc.201300898 http://dx.doi.org/10.1002/cssc.201300898
Baillie C. ; Matovic D. ; Thamae T. ; Vaja S. Waste-based composites: poverty reducing solutions to environmental problems . Resour. Conserv. Recycl. , 2011 , 55 ( 11 ), 973 - 978 . doi: 10.1016/j.resconrec.2011.05.006 http://dx.doi.org/10.1016/j.resconrec.2011.05.006
Al-Salem S. M. ; Lettieri P. ; Baeyens J. The valorization of plastic solid waste (PSW) by primary to quaternary routes: from re-use to energy and chemicals . Prog. Energy Combust. Sci. , 2010 , 36 ( 1 ), 103 - 129 . doi: 10.1016/j.pecs.2009.09.001 http://dx.doi.org/10.1016/j.pecs.2009.09.001
Witkowski A. ; Stec A. A. ; Hull T. R. Thermal decomposition of polymeric materials . SFPE Handbook of Fire Protection Engineering. New York : Springer New York, 2016 , 167 - 254 . doi: 10.1007/978-1-4939-2565-0_7 http://dx.doi.org/10.1007/978-1-4939-2565-0_7
Kang M. G. ; Kwak M. J. ; Kim Y. Polystyrene microplastics biodegradation by gut bacterial Enterobacter hormaechei from mealworms under anaerobic conditions: anaerobic oxidation and depolymerization . J. Hazard. Mater. , 2023 , 459 , 132045 . doi: 10.1016/j.jhazmat.2023.132045 http://dx.doi.org/10.1016/j.jhazmat.2023.132045
Qiu Q. ; Li H. ; Sun X. J. ; Tian K. J. ; Gu J. M. ; Zhang F. L. ; Zhou D. D. ; Zhang X. W. ; Huo H. L. Integrating genomics, molecular docking, and protein expression to explore new perspectives on polystyrene biodegradation . J. Hazard. Mater. , 2024 , 476 , 135031 . doi: 10.1016/j.jhazmat.2024.135031 http://dx.doi.org/10.1016/j.jhazmat.2024.135031
Panda A. K. ; Singh R. K. ; Mishra D. K. Thermolysis of waste plastics to liquid fuelA suitable method for plastic waste management and manufacture of value added products: a world prospective . Renew. Sustain. Energy Rev. , 2010 , 14 ( 1 ), 233 - 248 . doi: 10.1016/j.rser.2009.07.005 http://dx.doi.org/10.1016/j.rser.2009.07.005
Torres N. ; Robin J. J. ; Boutevin B. Study of thermal and mechanical properties of virgin and recycled poly(ethylene terephthalate) before and after injection molding . Eur. Polym. J. , 2000 , 36 ( 10 ), 2075 - 2080 . doi: 10.1016/s0014-3057(99)00301-8 http://dx.doi.org/10.1016/s0014-3057(99)00301-8
Miller S. A. Five misperceptions surrounding the environmental impacts of single-use plastic . Environ. Sci. Technol. , 2020 , 54 ( 22 ), 14143 - 14151 . doi: 10.1021/acs.est.0c05295 http://dx.doi.org/10.1021/acs.est.0c05295
Antelava A. ; Damilos S. ; Hafeez S. ; Manos G. ; Al-Salem S. M. ; Sharma B. K. ; Kohli K. ; Constantinou A. Plastic solid waste (PSW) in the context of life cycle assessment (LCA) and sustainable management . Environ. Manag. , 2019 , 64 ( 2 ), 230 - 244 . doi: 10.1007/s00267-019-01178-3 http://dx.doi.org/10.1007/s00267-019-01178-3
Jang M. ; Yang H. ; Park S. A. ; Sung H. K. ; Koo J. M. ; Hwang S. Y. ; Jeon H. ; Oh D. X. ; Park J. Analysis of volatile organic compounds produced during incineration of non-degradable and biodegradable plastics . Chemosphere , 2022 , 303 , 134946 . doi: 10.1016/j.chemosphere.2022.134946 http://dx.doi.org/10.1016/j.chemosphere.2022.134946
Vollmer I. ; Jenks M. J. F. ; Roelands M. C. P. ; White R. J. ; van Harmelen T. ; de Wild P. ; van der Laan G. P. ; Meirer F. ; Keurentjes J. T. F. ; Weckhuysen B. M. Beyond mechanical recycling: giving new life to plastic waste . Angew. Chem. Int. Ed. , 2020 , 59 ( 36 ), 15402 - 15423 . doi: 10.1002/anie.201915651 http://dx.doi.org/10.1002/anie.201915651
Huang J. J. ; Veksha A. ; Chan W. P. ; Giannis A. ; Lisak G. Chemical recycling of plastic waste for sustainable material management: a prospective review on catalysts and processes . Renew. Sustain. Energy Rev. , 2022 , 154 , 111866 . doi: 10.1016/j.rser.2021.111866 http://dx.doi.org/10.1016/j.rser.2021.111866
Mark L. O. ; Cendejas M. C. ; Hermans I. The use of heterogeneous catalysis in the chemical valorization of plastic waste . ChemSusChem , 2020 , 13 ( 22 ), 5808 - 5836 . doi: 10.1002/cssc.202001905 http://dx.doi.org/10.1002/cssc.202001905
Dai L. L. ; Zhou N. ; Lv Y. C. ; Cheng Y. L. ; Wang Y. P. ; Liu Y. H. ; Cobb K. ; Chen P. ; Lei H. W. ; Ruan R. Pyrolysis technology for plastic waste recycling: a state-of-the-art review . Prog. Energy Combust. Sci. , 2022 , 93 , 101021 . doi: 10.1016/j.pecs.2022.101021 http://dx.doi.org/10.1016/j.pecs.2022.101021
Wall L. A. ; Madorsky S. L. ; Brown D. W. ; Straus S. ; Simha R. The depolymerization of polymethylene and polyethylene . J. Am. Chem. Soc. , 1954 , 76 ( 13 ), 3430 - 3437 . doi: 10.1021/ja01642a017 http://dx.doi.org/10.1021/ja01642a017
Anuar Sharuddin S. D. ; Abnisa F. ; Wan DaudW. M. A. ; Aroua M. K. A review on pyrolysis of plastic wastes . Energy Convers. Manag. , 2016 , 115 , 308 - 326 . doi: 10.1016/j.enconman.2016.02.037 http://dx.doi.org/10.1016/j.enconman.2016.02.037
Miandad R. ; Barakat M. A. ; Aburiazaiza A. S. ; Rehan M. ; Nizami A. S. Catalytic pyrolysis of plastic waste: a review . Process. Saf. Environ. Prot. , 2016 , 102 , 822 - 838 . doi: 10.1016/j.psep.2016.06.022 http://dx.doi.org/10.1016/j.psep.2016.06.022
Piovano A. ; Paone E. The reductive catalytic upcycling of polyolefin plastic waste . Curr. Res. Green Sustain. Chem. , 2022 , 5 , 100334 . doi: 10.1016/j.crgsc.2022.100334 http://dx.doi.org/10.1016/j.crgsc.2022.100334
Hibbitts D. D. ; Flaherty D. W. ; Iglesia E. Role of branching on the rate and mechanism of C—C cleavage in alkanes on metal surfaces . ACS Catal. , 2016 , 6 ( 1 ), 469 - 482 . doi: 10.1021/acscatal.5b01950 http://dx.doi.org/10.1021/acscatal.5b01950
Weitkamp J. Catalytic hydrocracking: mechanisms and versatility of the process . ChemCatChem , 2012 , 4 ( 3 ), 292 - 306 . doi: 10.1002/cctc.201100315 http://dx.doi.org/10.1002/cctc.201100315
Ukei H. ; Hirose T. ; Horikawa S. ; Takai Y. ; Taka M. ; Azuma N. ; Ueno A. Catalytic degradation of polystyrene into styrene and a design of recyclable polystyrene with dispersed catalysts . Catal. Today , 2000 , 62 ( 1 ), 67 - 75 . doi: 10.1016/s0920-5861(00)00409-0 http://dx.doi.org/10.1016/s0920-5861(00)00409-0
Gregory G. J. ; Wang C. ; Sadula S. ; Koval S. ; Lobo R. F. ; Vlachos D. G. ; Papoutsakis E. T. Polyethylene valorization by combined chemical catalysis with bioconversion by plastic-enriched microbial consortia . ACS Sustainable Chem. Eng. , 2023 , 11 ( 8 ), 3494 - 3505 . doi: 10.1021/acssuschemeng.2c07461 http://dx.doi.org/10.1021/acssuschemeng.2c07461
Sun J. K. ; Dong J. H. ; Gao L. J. ; Zhao Y. Q. ; Moon H. ; Scott S. L. Catalytic upcycling of polyolefins . Chem. Rev. , 2024 , 124 ( 16 ), 9457 - 9579 . doi: 10.1021/acs.chemrev.3c00943 http://dx.doi.org/10.1021/acs.chemrev.3c00943
Zheng J. ; Png Z. M. ; Oh X. Y. ; Zuo H. N. ; Li Z. B. Recycling homocarbon backbone polymers toward a circular materials economy . Chem , 2025 , 11 ( 3 ), 102406 . doi: 10.1016/j.chempr.2024.102406 http://dx.doi.org/10.1016/j.chempr.2024.102406
Gan L. ; Dong Z. W. ; Xu H. F. ; Lv H. D. ; Liu G. X. ; Zhang F. ; Huang Z. Beyond conventional degradation: catalytic solutions for polyolefin upcycling . CCS Chem. , 2024 , 6 ( 2 ), 313 - 333 . doi: 10.31635/ccschem.023.202303538 http://dx.doi.org/10.31635/ccschem.023.202303538
Martin G. C. Physical properties of polymers handbook , 2nd ed . J. Am. Chem. Soc. , 2008 , 130 ( 3 ), 1111 . doi: 10.1021/ja0769503 http://dx.doi.org/10.1021/ja0769503
Stamm M. Introduction to physical polymer science . Macromol. Chem. Phys. , 2006 , 207 ( 8 ), 787 . doi: 10.1002/macp.200600086 http://dx.doi.org/10.1002/macp.200600086
Andrady A. L. ; Neal M. A. Applications and societal benefits of plastics . Philos. Trans. R. Soc. Lond. B Biol. Sci. , 2009 , 364 ( 1526 ), 1977 - 1984 . doi: 10.1098/rstb.2008.0304 http://dx.doi.org/10.1098/rstb.2008.0304
Zhang F. ; Zeng M. H. ; Yappert R. D. ; Sun J. K. ; Lee Y. H. ; LaPointe A. M. ; Peters B. ; Abu-Omar M. M. ; Scott S. L. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization . Science , 2020 , 370 ( 6515 ), 437 - 441 . doi: 10.1126/science.abc5441 http://dx.doi.org/10.1126/science.abc5441
Sun J. K. ; Lee Y. H. ; Yappert R. D. ; LaPointe A. M. ; Coates G. W. ; Peters B. ; Abu-Omar M. M. ; Scott S. L. Bifunctional tandem catalytic upcycling of polyethylene to surfactant-range alkylaromatics . Chem , 2023 , 9 ( 8 ), 2318 - 2336 . doi: 10.1016/j.chempr.2023.05.017 http://dx.doi.org/10.1016/j.chempr.2023.05.017
Chen W. J. ; Jiao Y. C. ; Liu Y. ; Wang M. ; Zhang F. ; Ma D. One-pot upgrading polyethylene and CO 2 to aromatics via tandem catalysis . CCS Chem. , 2024 , 6 ( 6 ), 1422 - 1429 . doi: 10.31635/ccschem.023.202303518 http://dx.doi.org/10.31635/ccschem.023.202303518
Du J. J. ; Zeng L. ; Yan T. ; Wang C. H. ; Wang M. L. ; Luo L. ; Wu W. L. ; Peng Z. J. ; Li H. L. ; Zeng J. Efficient solvent- and hydrogen-free upcycling of high-density polyethylene into separable cyclic hydrocarbons . Nat. Nanotechnol. , 2023 , 18 ( 7 ), 772 - 779 . doi: 10.1038/s41565-023-01429-9 http://dx.doi.org/10.1038/s41565-023-01429-9
Liu Y. Y. ; Ma B. ; Tian J. Q. ; Zhao C. Coupled conversion of polyethylene and carbon dioxide catalyzed by a zeolite-metal oxide system . Sci. Adv. , 2024 , 10 ( 15 ), eadn 0252 . doi: 10.1126/sciadv.adn0252 http://dx.doi.org/10.1126/sciadv.adn0252
Ding Y. ; Zhang S. C. ; Liu C. ; Shao Y. ; Pan X. L. ; Bao X. H. CO(2)-facilitated upcycling of polyolefin plastics to aromatics at low temperature . Natl. Sci. Rev. , 2024 , 11 ( 5 ), nwae 097 . doi: 10.1093/nsr/nwae097 http://dx.doi.org/10.1093/nsr/nwae097
Chen Z. ; Qiu Z. T. ; Lin S. Y. ; Lin B. L. Methanol-facilitated cascaded polyolefin upcycling enabling the efficient generation of high-value C9+ alkylaromatics . Angew. Chem. Int. Ed. , 2025 , 64 ( 31 ), e 202503355 . doi: 10.1002/anie.202503355 http://dx.doi.org/10.1002/anie.202503355
Burnett R. L. ; Hughes T. R. Mechanism and poisoning of the molecular redistribution reaction of alkanes with a dual-functional catalyst system . J. Catal. , 1973 , 31 ( 1 ), 55 - 64 . doi: 10.1016/0021-9517(73)90270-4 http://dx.doi.org/10.1016/0021-9517(73)90270-4
Vidal V. V. ; Theolier A. ; Thivolle-Cazat J. ; Basset J. Metathesis of alkanes catalyzed by silica-supported transition metal hydrides . Science , 1997 , 276 ( 5309 ), 99 - 102 . doi: 10.1126/science.276.5309.99 http://dx.doi.org/10.1126/science.276.5309.99
Jia X. Q. ; Qin C. ; Friedberger T. ; Guan Z. B. ; Huang Z. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions . Sci. Adv. , 2016 , 2 ( 6 ), e 1501591 . doi: 10.1126/sciadv.1501591 http://dx.doi.org/10.1126/sciadv.1501591
Haibach M. C. ; Kundu S. ; Brookhart M. ; Goldman A. S. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry . Acc. Chem. Res. , 2012 , 45 ( 6 ), 947 - 958 . doi: 10.1021/ar3000713 http://dx.doi.org/10.1021/ar3000713
Ellis L. D. ; Orski S. V. ; Kenlaw G. A. ; Norman A. G. ; Beers K. L. ; Román-Leshkov Y. ; Beckham G. T. Tandem heterogeneous catalysis for polyethylene depolymerization via an olefin-intermediate process . ACS Sustainable Chem. Eng. , 2021 , 9 ( 2 ), 623 - 628 . doi: 10.1021/acssuschemeng.0c07612 http://dx.doi.org/10.1021/acssuschemeng.0c07612
Kim D. ; Hinton Z. R. ; Bai P. ; Korley L. T. J. ; Epps T. H. ; Lobo R. F. Metathesis, molecular redistribution of alkanes, and the chemical upgrading of low-density polyethylene . Appl. Catal. B Environ. , 2022 , 318 , 121873 . doi: 10.1016/j.apcatb.2022.121873 http://dx.doi.org/10.1016/j.apcatb.2022.121873
Zeng M. H. ; Lee Y. H. ; Strong G. ; LaPointe A. M. ; Kocen A. L. ; Qu Z. Q. ; Coates G. W. ; Scott S. L. ; Abu-Omar M. M. Chemical upcycling of polyethylene to value-added α , ω -divinyl-functionalized oligomers . ACS Sustainable Chem. Eng. , 2021 , 9 ( 41 ), 13926 - 13936 . doi: 10.1021/acssuschemeng.1c05272 http://dx.doi.org/10.1021/acssuschemeng.1c05272
Conk R. J. ; Hanna S. ; Shi J. X. ; Yang J. ; Ciccia N. R. ; Qi L. ; Bloomer B. J. ; Heuvel S. ; Wills T. ; Su J. ; Bell A. T. ; Hartwig J. F. Catalytic deconstruction of waste polyethylene with ethylene to form propylene . Science , 2022 , 377 ( 6614 ), 1561 - 1566 . doi: 10.1126/science.add1088 http://dx.doi.org/10.1126/science.add1088
Wang N. M. ; Strong G. ; DaSilva V. ; Gao L. J. ; Huacuja R. ; Konstantinov I. A. ; Rosen M. S. ; Nett A. J. ; Ewart S. ; Geyer R. ; Scott S. L. ; Guironnet D. Chemical recycling of polyethylene by tandem catalytic conversion to propylene . J. Am. Chem. Soc. , 2022 , 144 ( 40 ), 18526 - 18531 . doi: 10.1021/jacs.2c07781 http://dx.doi.org/10.1021/jacs.2c07781
Conk R. J. ; Stahler J. F. ; Shi J. X. ; Yang J. ; Lefton N. G. ; Brunn J. N. ; Bell A. T. ; Hartwig J. F. Polyolefin waste to light olefins with ethylene and base-metal heterogeneous catalysts . Science , 2024 , 385 ( 6715 ), 1322 - 1327 . doi: 10.1126/science.adq7316 http://dx.doi.org/10.1126/science.adq7316
Chamas A. ; Moon H. ; Zheng J. J. ; Qiu Y. ; Tabassum T. ; Jang J. H. ; Abu-Omar M. ; Scott S. L. ; Suh S. Degradation rates of plastics in the environment . ACS Sustainable Chem. Eng. , 2020 , 8 ( 9 ), 3494 - 3511 . doi: 10.1021/acssuschemeng.9b06635 http://dx.doi.org/10.1021/acssuschemeng.9b06635
Bäckström E. ; Odelius K. ; Hakkarainen M. Trash to treasure: microwave-assisted conversion of polyethylene to functional chemicals . Ind. Eng. Chem. Res. , 2017 , 56 ( 50 ), 14814 - 14821 . doi: 10.1021/acs.iecr.7b04091 http://dx.doi.org/10.1021/acs.iecr.7b04091
Chow C. F. ; Wong W. L. ; Ho K. Y. ; Chan C. S. ; Gong C. B. Combined chemical activation and Fenton degradation to convert waste polyethylene into high-value fine chemicals . Chem. Eur. J. , 2016 , 22 ( 28 ), 9513 - 9518 . doi: 10.1002/chem.201600856 http://dx.doi.org/10.1002/chem.201600856
Zhou W. ; Zhong H. ; Jin F. ; Iop . Hydrothermal oxidation of polyethylene (PE) plastic to short-chain fatty acids ( C1 - C5 ). 2nd International Conference on Air Pollution and Environmental Engineering (APEE). Xi’an , 2019. doi: 10.1088/1755-1315/450/1/012049 http://dx.doi.org/10.1088/1755-1315/450/1/012049
Ghatge S. ; Yang Y. R. ; Ko Y. ; Yoon Y. ; Ahn J. H. ; Kim J. J. ; Hur H. G. Degradation of sulfonated polyethylene by a bio-photo-Fenton approach using glucose oxidase immobilized on titanium dioxide . J. Hazard. Mater. , 2022 , 423 , 127067 . doi: 10.1016/j.jhazmat.2021.127067 http://dx.doi.org/10.1016/j.jhazmat.2021.127067
Breen R. ; Holmes J. D. ; Collins G. Heterogeneous Fenton-type oxidative degradation of low-density polyethylene to valuable acid products using a nanostructured Fe-CeO 2 solid solution catalyst . Catal. Sci. Technol. , 2025 , 15 ( 3 ), 920 - 932 . doi: 10.1039/d4cy01384k http://dx.doi.org/10.1039/d4cy01384k
Pifer A. ; Sen A. Chemical recycling of plastics to useful organic compounds by oxidative degradation . Angew. Chem. Int. Ed. , 1998 , 37 ( 23 ), 3306 - 3308 . doi: 10.1002/(sici)1521-3773(19981217)37:23<3306::aid-anie3306>3.0.co;2-b http://dx.doi.org/10.1002/(sici)1521-3773(19981217)37:23<3306::aid-anie3306>3.0.co;2-b
Partenheimer W. Valuable oxygenates by aerobic oxidation of polymers using metal/bromide homogeneous catalysts . Catal. Today , 2003 , 81 ( 2 ), 117 - 135 . doi: 10.1016/s0920-5861(03)00124-x http://dx.doi.org/10.1016/s0920-5861(03)00124-x
Elmanovich I. V. ; Stakhanov A. I. ; Zefirov V. V. ; Pavlov A. A. ; Lokshin B. V. ; Gallyamov M. O. Thermal oxidation of polypropylene catalyzed by manganese oxide aerogel in oxygen-enriched supercritical carbon dioxide . J. Supercrit. Fluids , 2020 , 158 , 104744 . doi: 10.1016/j.supflu.2019.104744 http://dx.doi.org/10.1016/j.supflu.2019.104744
Jiao X. C. ; Zheng K. ; Chen Q. X. ; Li X. D. ; Li Y. M. ; Shao W. W. ; Xu J. Q. ; Zhu J. F. ; Pan Y. ; Sun Y. F. ; Xie Y. Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions . Angew. Chem. Int. Ed. , 2020 , 59 ( 36 ), 15497 - 15501 . doi: 10.1002/anie.201915766 http://dx.doi.org/10.1002/anie.201915766
Wang K. L. ; Jia R. R. ; Cheng P. ; Shi L. Y. ; Wang X. ; Huang L. Highly selective catalytic oxi-upcycling of polyethylene to aliphatic dicarboxylic acid under a mild hydrogen-free process . Angew. Chem. Int. Ed. , 2023 , 62 ( 29 ), e 202301340 . doi: 10.1002/anie.202301340 http://dx.doi.org/10.1002/anie.202301340
Li C. F. ; Kong X. Y. ; Lyu M. P. ; Tay X. T. ; Đokić M. ; Chin K. F. ; Yang C. T. ; Lee E. K. X. ; Zhang J. F. ; Tham C. Y. ; Chan W. X. ; Lee W. J. ; Lim T. T. ; Goto A. ; Sullivan M. B. ; Soo H. S. Upcycling of non-biodegradable plastics by base metal photocatalysis . Chem , 2023 , 9 ( 9 ), 2683 - 2700 . doi: 10.1016/j.chempr.2023.07.008 http://dx.doi.org/10.1016/j.chempr.2023.07.008
Zhao B. Z. ; Tan H. ; Yang J. ; Zhang X. H. ; Yu Z. D. ; Sun H. L. ; Wei J. L. ; Zhao X. Y. ; Zhang Y. F. ; Chen L. L. ; Yang D. L. ; Deng J. ; Fu Y. ; Huang Z. ; Jiao N. Catalytic conversion of mixed polyolefins under mild atmospheric pressure . Innovation , 2024 , 5 ( 2 ), 100586 . doi: 10.1016/j.xinn.2024.100586 http://dx.doi.org/10.1016/j.xinn.2024.100586
Li L. F. ; Leutzsch M. ; Hesse P. ; Wang C. H. ; Wang B. L. ; Schüth F. Polyethylene recycling via water activation by ball milling . Angew. Chem. Int. Ed. , 2025 , 64 ( 1 ), e 202413132 . doi: 10.1002/anie.202413132 http://dx.doi.org/10.1002/anie.202413132
Liu X. L. ; Wang X. P. ; Chu M. Y. ; Zhang W. J. ; Fu J. ; Li S. M. ; Wang L. ; Chen J. X. ; Zhang Q. ; Cao M. H. Selective liquid chemical production in waste polyolefin photorefinery by controlling reactive species . J. Am. Chem. Soc. , 2025 , 147 ( 6 ), 5228 - 5237 . doi: 10.1021/jacs.4c15718 http://dx.doi.org/10.1021/jacs.4c15718
Hou X. Y. ; Yuan F. ; Liu X. D. ; Wang K. L. ; Zhu Y. ; Cheng P. ; Jia R. R. ; Shi L. Y. ; Huang L. Gradient-temperature control enhances oxi-upcycling of polyethylene plastics to dicarboxylic acids over TS-1 zeolite . Chem. Eng. J. , 2025 , 504 , 158868 . doi: 10.1016/j.cej.2024.158868 http://dx.doi.org/10.1016/j.cej.2024.158868
Rabot C. ; Chen Y. H. ; Bijlani S. ; Chiang Y. M. ; Oakley C. E. ; Oakley B. R. ; Williams T. J. ; Wang C. C. C. Conversion of polyethylenes into fungal secondary metabolites . Angew. Chem. Int. Ed. , 2023 , 62 ( 4 ), e 202214609 . doi: 10.1002/anie.202214609 http://dx.doi.org/10.1002/anie.202214609
Sullivan K. P. ; Werner A. Z. ; Ramirez K. J. ; Ellis L. D. ; Bussard J. R. ; Black B. A. ; Brandner D. G. ; Bratti F. ; Buss B. L. ; Dong X. M. ; Haugen S. J. ; Ingraham M. A. ; Konev M. O. ; Michener W. E. ; Miscall J. ; Pardo I. ; Woodworth S. P. ; Guss A. M. ; Román-Leshkov Y. ; Stahl S. S. ; Beckham G. T. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling . Science , 2022 , 378 ( 6616 ), 207 - 211 . doi: 10.1126/science.abo4626 http://dx.doi.org/10.1126/science.abo4626
Kanbur U. ; Zang G. Y. ; Paterson A. L. ; Chatterjee P. ; Hackler R. A. ; Delferro M. ; Slowing I. I. ; Perras F. A. ; Sun P. P. ; Sadow A. D. Catalytic carbon-carbon bond cleavage and carbon-element bond formation give new life for polyolefins as biodegradable surfactants . Chem , 2021 , 7 ( 5 ), 1347 - 1362 . doi: 10.1016/j.chempr.2021.03.007 http://dx.doi.org/10.1016/j.chempr.2021.03.007
Zhang W. ; Kim S. ; Wahl L. ; Khare R. ; Hale L. ; Hu J. Z. ; Camaioni D. M. ; Gutiérrez O. Y. ; Liu Y. ; Lercher J. A. Low-temperature upcycling of polyolefins into liquid alkanes via tandem cracking-alkylation . Science , 2023 , 379 ( 6634 ), 807 - 811 . doi: 10.1126/science.ade7485 http://dx.doi.org/10.1126/science.ade7485
Li H. Q. ; Wu J. Y. ; Jiang Z. ; Ma J. Z. ; Zavala V. M. ; Landis C. R. ; Mavrikakis M. ; Huber G. W. Hydroformylation of pyrolysis oils to aldehydes and alcohols from polyolefin waste . Science , 2023 , 381 ( 6658 ), 660 - 666 . doi: 10.1126/science.adh1853 http://dx.doi.org/10.1126/science.adh1853
Xu Z. ; Munyaneza N. E. ; Zhang Q. K. ; Sun M. Q. ; Posada C. ; Venturo P. ; Rorrer N. A. ; Miscall J. ; Sumpter B. G. ; Liu G. L. Chemical upcycling of polyethylene, polypropylene, and mixtures to high-value surfactants . Science , 2023 , 381 ( 6658 ), 666 - 671 . doi: 10.1126/science.adh0993 http://dx.doi.org/10.1126/science.adh0993
Cen Z. Y. ; Han X. ; Lin L. F. ; Yang S. H. ; Han W. Y. ; Wen W. L. ; Yuan W. L. ; Dong M. H. ; Ma Z. Y. ; Li F. ; Ke Y. B. ; Dong J. C. ; Zhang J. ; Liu S. H. ; Li J. L. ; Li Q. ; Wu N. N. ; Xiang J. F. ; Wu H. ; Cai L. L. ; Hou Y. B. ; Cheng Y. Q. ; Daemen L. L. ; Ramirez-Cuesta A. J. ; Ferrer P. ; Grinter D. C. ; Held G. ; Liu Y. M. ; Han B. X. Upcycling of polyethylene to gasoline through a self-supplied hydrogen strategy in a layered self-pillared zeolite . Nat. Chem. , 2024 , 16 ( 6 ), 871 - 880 . doi: 10.1038/s41557-024-01506-z http://dx.doi.org/10.1038/s41557-024-01506-z
Cheng C. ; Zhu R. ; Costa A. M. ; Thompson R. G. Optimisation of waste clean-up after large-scale disasters . Waste Manag. , 2021 , 119 , 1 - 10 . doi: 10.1016/j.wasman.2020.09.023 http://dx.doi.org/10.1016/j.wasman.2020.09.023
Saikrishnan S. ; Jubinville D. ; Tzoganakis C. ; Mekonnen T. H. Thermo-mechanical degradation of polypropylene (PP) and low-density polyethylene (LDPE) blends exposed to simulated recycling . Polym. Degrad. Stabil. , 2020 , 182 , 109390 . doi: 10.1016/j.polymdegradstab.2020.109390 http://dx.doi.org/10.1016/j.polymdegradstab.2020.109390
Nicholson S. R. ; Rorrer N. A. ; Carpenter A. C. ; Beckham G. T. Manufacturing energy and greenhouse gas emissions associated with plastics consumption . Joule , 2021 , 5 ( 3 ), 673 - 686 . doi: 10.1016/j.joule.2020.12.027 http://dx.doi.org/10.1016/j.joule.2020.12.027
Wilkes R. A. ; Aristilde L. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp . Capabilities and Challenges. J. Appl. Microbiol. , 2017 , 123 ( 3 ), 582 - 593 . doi: 10.1111/jam.13472 http://dx.doi.org/10.1111/jam.13472
Rahimi A. ; García J. M. Chemical recycling of waste plastics for new materials production . Nat. Rev. Chem. , 2017 , 1 , 46 . doi: 10.1038/s41570-017-0046 http://dx.doi.org/10.1038/s41570-017-0046
Advancing sustainable materials management: 2018 tables and figures . United States Environmental Protection Agency , 2020 , 1 - 80 .
Savoldelli J. ; Tomback D. ; Savoldelli H. Breaking down polystyrene through the application of a two-step thermal degradation and bacterial method to produce usable byproducts . Waste Manag. , 2017 , 60 , 123 - 126 . doi: 10.1016/j.wasman.2016.04.017 http://dx.doi.org/10.1016/j.wasman.2016.04.017
Jambeck J. R. ; Geyer R. ; Wilcox C. ; Siegler T. R. ; Perryman M. ; Andrady A. ; Narayan R. ; Law K. L. Plastic waste inputs from land into the ocean . Science , 2015 , 347 ( 6223 ), 768 - 771 . doi: 10.1126/science.1260352 http://dx.doi.org/10.1126/science.1260352
Korley L. T. J. ; Epps T. H. 3rd , Helms, B. A.; Ryan, A. J. Toward polymer upcycling-adding value and tackling circularity. Science, 2021 , 373 ( 6550 ), 66 - 69 . doi: 10.1126/science.abg4503 http://dx.doi.org/10.1126/science.abg4503
Abel B. A. ; Snyder R. L. ; Coates G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals . Science , 2021 , 373 ( 6556 ), 783 - 789 . doi: 10.1126/science.abh0626 http://dx.doi.org/10.1126/science.abh0626
Luo X. ; Zhan J. H. ; Mei Q. Q. ; Zhang S. C. Selective oxidative upgrade of waste polystyrene plastics by nitric acid to produce benzoic acid . Green Chem. , 2023 , 25 ( 17 ), 6717 - 6727 . doi: 10.1039/d3gc00865g http://dx.doi.org/10.1039/d3gc00865g
Ong A. ; Teo J. Y. Q. ; Feng Z. X. ; Tan T. T. Y. ; Lim J. Y. C. Organocatalytic aerobic oxidative degradation of polystyrene to aromatic acids . ACS Sustainable Chem. Eng. , 2023 , 11 ( 34 ), 12514 - 12522 . doi: 10.1021/acssuschemeng.3c01387 http://dx.doi.org/10.1021/acssuschemeng.3c01387
Rabot C. ; Chen Y. H. ; Lin S. Y. ; Miller B. ; Chiang Y. M. ; Oakley C. E. ; Oakley B. R. ; Wang C. C. C. ; Williams T. J. Polystyrene upcycling into fungal natural products and a biocontrol agent . J. Am. Chem. Soc. , 2023 , 145 ( 9 ), 5222 - 5230 . doi: 10.1021/jacs.2c12285 http://dx.doi.org/10.1021/jacs.2c12285
Sun C. Y. ; Guo Y. ; Liu X. H. ; Wang Y. Q. Heterogeneous oxidative upcycling of polystyrene plastics to benzoic acid under air conditions . Catal. Sci. Technol. , 2024 , 14 ( 22 ), 6584 - 6591 . doi: 10.1039/d4cy00970c http://dx.doi.org/10.1039/d4cy00970c
Giakoumakis N. S. ; Marquez C. ; de Oliveira-Silva R. ; Sakellariou D. ; De Vos D. E. Upcycling of polystyrene to aromatic polyacids by tandem Friedel‒Crafts and oxidation reactions . J. Am. Chem. Soc. , 2024 , 146 ( 50 ), 34753 - 34762 . doi: 10.1021/jacs.4c13265 http://dx.doi.org/10.1021/jacs.4c13265
Wang M. ; Wen J. L. ; Huang Y. H. ; Hu P. Selective degradation of styrene-related plastics catalyzed by iron under visible light . ChemSusChem , 2021 , 14 ( 22 ), 5049 - 5056 . doi: 10.1002/cssc.202101762 http://dx.doi.org/10.1002/cssc.202101762
Zhang G. X. ; Zhang Z. N. ; Zeng R. Photoinduced FeCl 3 -c atalyzed alkyl aromatics oxidation toward degradation of polystyrene at room temperature . Chin. J. Chem. , 2021 , 39 ( 12 ), 3225 - 3230 . doi: 10.1002/cjoc.202100420 http://dx.doi.org/10.1002/cjoc.202100420
Oh S. ; Stache E. E. Chemical upcycling of commercial polystyrene via catalyst-controlled photooxidation . J. Am. Chem. Soc. , 2022 , 144 ( 13 ), 5745 - 5749 . doi: 10.1021/jacs.2c01411 http://dx.doi.org/10.1021/jacs.2c01411
Huang Z. L. ; Shanmugam M. ; Liu Z. ; Brookfield A. ; Bennett E. L. ; Guan R. P. ; Vega Herrera D. E. ; Lopez-Sanchez J. A. ; Slater A. G. ; McInnes E. J. L. ; Qi X. T. ; Xiao J. L. Chemical recycling of polystyrene to valuable chemicals via selective acid-catalyzed aerobic oxidation under visible light . J. Am. Chem. Soc. , 2022 , 144 ( 14 ), 6532 - 6542 . doi: 10.1021/jacs.2c01410 http://dx.doi.org/10.1021/jacs.2c01410
Li T. F. ; Vijeta A. ; Casadevall C. ; Gentleman A. S. ; Euser T. ; Reisner E. Bridging plastic recycling and organic catalysis: photocatalytic deconstruction of polystyrene via a C—H oxidation pathway . ACS Catal. , 2022 , 12 ( 14 ), 8155 - 8163 . doi: 10.1021/acscatal.2c02292 http://dx.doi.org/10.1021/acscatal.2c02292
Qin Y. M. ; Zhang T. ; Vincent Ching H. Y. ; Raman G. S. ; Das S. Integrated strategy for the synthesis of aromatic building blocks via upcycling of real-life plastic wastes . Chem , 2022 , 8 ( 9 ), 2472 - 2484 . doi: 10.1016/j.chempr.2022.06.002 http://dx.doi.org/10.1016/j.chempr.2022.06.002
Cao R. C. ; Zhang M. Q. ; Hu C. Q. ; Xiao D. Q. ; Wang M. ; Ma D. Catalytic oxidation of polystyrene to aromatic oxygenates over a graphitic carbon nitride catalyst . Nat. Commun. , 2022 , 13 , 4809 . doi: 10.1038/s41467-022-32510-x http://dx.doi.org/10.1038/s41467-022-32510-x
Nikitas N. F. ; Skolia E. ; Gkizis P. L. ; Triandafillidi I. ; Kokotos C. G. Photochemical aerobic upcycling of polystyrene plastics to commodity chemicals using anthraquinone as the photocatalyst . Green Chem. , 2023 , 25 ( 12 ), 4750 - 4759 . doi: 10.1039/d3gc00986f http://dx.doi.org/10.1039/d3gc00986f
Meng J. L. ; Zhou Y. L. ; Li D. J. ; Jiang X. F. Degradation of plastic wastes to commercial chemicals and monomers under visible light . Sci. Bull. , 2023 , 68 ( 14 ), 1522 - 1530 . doi: 10.1016/j.scib.2023.06.024 http://dx.doi.org/10.1016/j.scib.2023.06.024
Peng Z. K. ; Chen R. K. ; Li H. J. Heterogeneous photocatalytic oxidative cleavage of polystyrene to aromatics at room temperature . ACS Sustainable Chem. Eng. , 2023 , 11 ( 29 ), 10688 - 10697 . doi: 10.1021/acssuschemeng.3c01282 http://dx.doi.org/10.1021/acssuschemeng.3c01282
Tang S. B. ; Jiang Y. X. ; Li K. ; Wang Z. X. ; Su J. Uranyl photocatalyzed polystyrene oxidative degradation under visible light in a green solvent . Ind. Eng. Chem. Res. , 2024 , 63 ( 11 ), 4817 - 4824 . doi: 10.1021/acs.iecr.3c04426 http://dx.doi.org/10.1021/acs.iecr.3c04426
Xu S. Y. ; Liu S. X. ; Song W. Z. ; Zheng N. Metal-free upcycling of plastic waste: photo-induced oxidative degradation of polystyrene in air . Green Chem. , 2024 , 26 ( 3 ), 1363 - 1369 . doi: 10.1039/d3gc04197b http://dx.doi.org/10.1039/d3gc04197b
Ong A. ; Wong Z. C. ; Chin K. L. O. ; Loh W. W. ; Chua M. H. ; Ang S. J. ; Lim J. Y. C. Enhancing the photocatalytic upcycling of polystyrene to benzoic acid: a combined computational-experimental approach for acridinium catalyst design . Chem. Sci. , 2024 , 15 ( 3 ), 1061 - 1067 . doi: 10.1039/d3sc06388g http://dx.doi.org/10.1039/d3sc06388g
Xu E. J. ; Liu T. W. ; Xie F. Y. ; He J. H. ; Zhang Y. T. Aerobic oxidation of alkylarenes and polystyrene waste to benzoic acids via a copper-based catalyst . Chem. Sci. , 2024 , 16 ( 4 ), 2004 - 2014 . doi: 10.1039/d4sc03269a http://dx.doi.org/10.1039/d4sc03269a
De Abreu A. L. ; Taton D. ; Bassani D. M. Reassessing the photochemical upcycling of polystyrene using acridinium salts . Angew. Chem. Int. Ed. , 2025 , 64 ( 6 ), e 202418680 . doi: 10.1002/anie.202418680 http://dx.doi.org/10.1002/anie.202418680
Zhang S. J. ; Wang J. X. ; Su D. W. ; Xiao X. Facile visible-light upcycling of diverse waste plastics using a single organocatalyst with minimal loadings . Nat. Commun. , 2025 , 16 ( 1 ), 4188 . doi: 10.1038/s41467-025-59540-5 http://dx.doi.org/10.1038/s41467-025-59540-5
Urgoitia G. ; Herrero M. T. ; SanMartin R. Metal-catalyzed, photo-assisted selective transformation of tertiary alkylbenzenes and polystyrenes into carbonyl compounds . ChemSusChem , 2022 , 15 ( 17 ), e 202200940 . doi: 10.1002/cssc.202200940 http://dx.doi.org/10.1002/cssc.202200940
Zhao B. Z. ; Hu Z. B. ; Sun Y. C. ; Hajiayi R. ; Wang T. ; Jiao N. Selective upcycling of polyolefins into high-value nitrogenated chemicals . J. Am. Chem. Soc. , 2024 , 146 ( 42 ), 28605 - 28611 . doi: 10.1021/jacs.4c07965 http://dx.doi.org/10.1021/jacs.4c07965
Zeng G. F. ; Su Y. M. ; Jiang J. W. ; Huang Z. L. Nitrogenative degradation of polystyrene waste . J. Am. Chem. Soc. , 2025 , 147 ( 3 ), 2737 - 2746 . doi: 10.1021/jacs.4c15500 http://dx.doi.org/10.1021/jacs.4c15500
Sun C. Y. ; Guo Y. ; Liu X. H. ; Wang Y. Q. Efficient upgrading of polystyrene plastics to nitriles through a catalytic oxidative amination process . Catal. Sci. Technol. , 2025 , 15 ( 6 ), 1905 - 1913 . doi: 10.1039/d4cy01512f http://dx.doi.org/10.1039/d4cy01512f
Munyaneza N. E. ; Posada C. ; Xu Z. ; De Altin Popiolek V. ; Paddock G. ; McKee C. ; Liu G. L. A generic platform for upcycling polystyrene to aryl ketones and organosulfur compounds . Angew. Chem. Int. Ed. , 2023 , 62 ( 36 ), e 202307042 . doi: 10.1002/anie.202307042 http://dx.doi.org/10.1002/anie.202307042
Baek D. ; Al Abdulghani A. J. ; Walsh D. J. ; Hofsommer D. T. ; Gerken J. B. ; Shi C. X. ; Chen E. Y. X. ; Hermans I. ; Stahl S. S. Can the hock process be used to produce phenol from polystyrene? J. Am. Chem. Soc. , 2025 , 147 ( 10 ), 8687 - 8694 . doi: 10.1021/jacs.4c18143 http://dx.doi.org/10.1021/jacs.4c18143
He S. F. ; Xu T. Y. ; Wan Q. H. ; Tang K. ; Chen X. Y. ; Li D. X. ; Jiang Y. ; Zhai C. ; Zhu C. ; Shen T. Divergent upcycling of polystyrene into phenol and hydroquinone derivatives by photocatalysis and electrocatalysis . Angew. Chem. Int. Ed. , 2025 , 64 ( 34 ), e 202508166 . doi: 10.1002/anie.202508166 http://dx.doi.org/10.1002/anie.202508166
Ranjan N. Chitosan with PVC polymer for biomedical applications: a bibliometric analysis . Mater. Today Proc. , 2023 , 81 , 894 - 898 . doi: 10.1016/j.matpr.2021.04.274 http://dx.doi.org/10.1016/j.matpr.2021.04.274
Martinz D. ; Quadros J. Compounding PVC with renewable materials . Plast. Rubber Compos. , 2008 , 37 ( 9-10 ), 459 - 464 . doi: 10.1179/174328908x362917 http://dx.doi.org/10.1179/174328908x362917
Liu Y. J. ; Zhou C. B. ; Li F. ; Liu H. J. ; Yang J. X. Stocks and flows of polyvinyl chloride (PVC) in China: 1980—2050 . Resour. Conserv. Recycl. , 2020 , 154 , 104584 . doi: 10.1016/j.resconrec.2019.104584 http://dx.doi.org/10.1016/j.resconrec.2019.104584
Obileke K. ; Onyeaka H. ; Nwokolo N. Materials for the design and construction of household biogas digesters for biogas production: a review . Int. J. Energy Res. , 2021 , 45 ( 3 ), 3761 - 3779 . doi: 10.1002/er.6120 http://dx.doi.org/10.1002/er.6120
Alsabri A. ; Al-Ghamdi S. G. Carbon footprint and embodied energy of PVC, PE, and PP piping: perspective on environmental performance . Energy Rep. , 2020 , 6 , 364 - 370 . doi: 10.1016/j.egyr.2020.11.173 http://dx.doi.org/10.1016/j.egyr.2020.11.173
Abdollahi Boraei S. B. ; Bakhshandeh B. ; Mohammadzadeh F. ; Haghighi D. M. ; Mohammadpour Z. Clay-reinforced PVC composites and nanocomposites . Heliyon , 2024 , 10 ( 7 ), e 29196 . doi: 10.1016/j.heliyon.2024.e29196 http://dx.doi.org/10.1016/j.heliyon.2024.e29196
Zakharyan E. M. ; Petrukhina N. N. ; Dzhabarov E. G. ; Maksimov A. L. Pathways of chemical recycling of polyvinyl chloride. part 2 . Russ. J. Appl. Chem. , 2020 , 93 ( 10 ), 1445 - 1490 . doi: 10.1134/s1070427220100018 http://dx.doi.org/10.1134/s1070427220100018
Lu L. H. ; Li W. M. ; Cheng Y. ; Liu M. Chemical recycling technologies for PVC waste and PVC-containing plastic waste: a review . Waste Manag. , 2023 , 166 , 245 - 258 . doi: 10.1016/j.wasman.2023.05.012 http://dx.doi.org/10.1016/j.wasman.2023.05.012
Liu L. D. ; Yan B. B. ; Liu T. C. ; Zhang Y. J. ; Du R. P. ; Wang J. L. ; Chen G. Y. ; Cheng Z. J. Chemical recycling of polyvinyl chloride: recent progress in pretreatment dechlorination and chlorine recycling . Resour. Conserv. Recycl. , 2025 , 222 , 108471 . doi: 10.1016/j.resconrec.2025.108471 http://dx.doi.org/10.1016/j.resconrec.2025.108471
Qi Y. Y. ; He J. H. ; Xiu F. R. ; Nie W. J. ; Chen M. J. Partial oxidation treatment of waste polyvinyl chloride in critical water: preparation of benzaldehyde/acetophenone and dechlorination . J. Clean. Prod. , 2018 , 196 , 331 - 339 . doi: 10.1016/j.jclepro.2018.06.074 http://dx.doi.org/10.1016/j.jclepro.2018.06.074
Skelly P. W. ; Chang C. F. ; Braslau R. Degradation of polyvinyl chloride by sequential dehydrochlorination and olefin metathesis . ChemPlusChem , 2023 , 88 ( 5 ), e 202300184 . doi: 10.1002/cplu.202300184 http://dx.doi.org/10.1002/cplu.202300184
Feng B. ; Guo Y. ; Liu X. H. ; Wang Y. Q. Transforming PVC plastic waste to benzene via hydrothermal treatment in a multi-phase system . Green Chem. , 2023 , 25 ( 21 ), 8505 - 8509 . doi: 10.1039/d3gc03063f http://dx.doi.org/10.1039/d3gc03063f
Gao Z. W. ; Wang Y. ; Yuan L. ; Shi X. R. ; Shang Y. H. ; Jiang J. G. ; Zhang M. ; Fang S. H. ; Zhang W. ; Liu Y. Room-temperature co-upcycling of polyvinyl chloride and polypropylene . Nat. Sustain. , 2024 , 7 ( 12 ), 1691 - 1698 . doi: 10.1038/s41893-024-01468-7 http://dx.doi.org/10.1038/s41893-024-01468-7
Zhang W. ; Yang B. D. ; Jackson B. A. ; Zhao J. B. ; Shi H. H. ; Camaioni D. M. ; Kim S. ; Wang H. M. ; Szanyi J. ; Lee M. S. ; Chen J. G. ; Lercher J. A. Integrated low-temperature PVC and polyolefin upgrading . Science , 2025 , 390 ( 6768 ), 88 - 94 . doi: 10.1126/science.adx5285 http://dx.doi.org/10.1126/science.adx5285
Faisal F. ; Rasul M. G. ; Jahirul M. I. ; Schaller D. Pyrolytic conversion of waste plastics to energy products: a review on yields, properties, and production costs . Sci. Total Environ. , 2023 , 861 , 160721 . doi: 10.1016/j.scitotenv.2022.160721 http://dx.doi.org/10.1016/j.scitotenv.2022.160721
Dong Z. W. ; Peng B. ; Xiao N. T. ; Chen W. J. ; Lei T. Y. ; Wang M. ; Li C. ; Zhang R. X. ; Qin Z. X. ; Liu X. C. ; Wen X. D. ; Li M. F. ; Ma D. ; Zhang F. Efficient conversion of polyethylene to light olefins by self-confined cracking and reforming . Nat. Commun. , 2025 , 16 ( 1 ), 7964 . doi: 10.1038/s41467-025-63116-8 http://dx.doi.org/10.1038/s41467-025-63116-8
Zhang R. X. ; Deng G. C. ; Jiang Z. Y. ; Fan Y. Y. ; Guo Y. Q. ; Dong Z. W. ; Chen W. J. ; Peng B. ; Zhang F. Upgrading polyolefin plastics: experiences from petroleum refining and distinct characteristics . Sci. China Chem. , 2025 , 68 ( 7 ), 2927 - 2947 . doi: 10.1007/s11426-024-2522-x http://dx.doi.org/10.1007/s11426-024-2522-x
0
Views
428
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号