

浏览全部资源
扫码关注微信
吉林大学化学学院 超分子结构与材料全国重点实验室 长春 130012
Received:03 October 2025,
Accepted:24 October 2025,
Published Online:20 November 2025,
Published:20 December 2025
移动端阅览
李懿轩, 孙俊奇. 高性能可持续聚合物材料:从层层组装膜到可逆交联聚合物. 高分子学报, 2025, 56(12), 2110-2124
Li, Y. X.; Sun, J. Q. High-performance sustainable polymer materials: from layer-by-layer assembled films to reversibly crosslinked polymers. Acta Polymerica Sinica, 2025, 56(12), 2110-2124
李懿轩, 孙俊奇. 高性能可持续聚合物材料:从层层组装膜到可逆交联聚合物. 高分子学报, 2025, 56(12), 2110-2124 DOI: 10.11777/j.issn1000-3304.2025.25255. CSTR: 32057.14.GFZXB.2025.7508.
Li, Y. X.; Sun, J. Q. High-performance sustainable polymer materials: from layer-by-layer assembled films to reversibly crosslinked polymers. Acta Polymerica Sinica, 2025, 56(12), 2110-2124 DOI: 10.11777/j.issn1000-3304.2025.25255. CSTR: 32057.14.GFZXB.2025.7508.
为了满足现代社会对聚合物材料优异力学性能与稳定性的要求,可持续聚合物材料在保持良好动态性的基础上,还需要具备媲美传统聚合物的力学性能与稳定性,甚至展现出传统聚合物不具备的独特力学性能. 本专论系统地介绍了我们在高性能可逆交联聚合物材料方面的研究进展. 从基于层层组装技术构建的自/可修复可逆交联聚合物膜出发,发展了基于聚合物复合物直接构筑具有自/可修复与可循环利用性的可逆交联塑料、弹性体及凝胶的有效方法,最终提出了基于多种可逆作用力与原位生成的纳米相分离结构的协同制备高性能可逆交联聚合物材料的概念. 通过调控纳米相分离结构的刚性、可变形性与动态解离性,制备了力学强度媲美或优于传统聚合物的可逆交联聚合物材料,还获得了具有独特力学性能的可逆交联聚合物材料,如兼具高强度与极低滞后性的水凝胶/离子凝胶、具有优异抗撕裂与抗损伤性的弹性体以及低温超韧且抗冲击的塑料等. 由于交联网络的可逆性,高性能可逆交联聚合物材料具有优异的修复、重复加工以及解聚回收等性能,为创制高性能可持续聚合物材料提供了全新方法.
To address the growing
demands of modern society for polymer materials with high mechanical performance and stability
it is imperative to develop sustainable polymers that combine dynamic functionalities with properties comparable to or exceeding those of traditional polymers. Here
we propose a new concept of reversibly crosslinked polymers (RCPs). RCPs are three-dimensional polymer networks in which polymer chains are reversibly crosslinked through noncovalent interactions and/or dynamic covalent bonds. By constructing RCPs from polymeric building blocks
the fraction of stable covalent bonds relative to reversible interactions is increased
thereby ensuring satisfactory strength and stability. This feature article comprehensively summarizes our advances in designing and fabricating high-performance RCPs. Using a layer-by-layer assembly strategy
we fabricated a series of self-healing/healable RCP films and elucidated their healing mechanisms. Inspired by this method
we further developed an efficient solution-based polymer complexation approach to produce bulk RCPs
extending healability from films to plastics
elastomers
and hydrogels/ionogels. Moreover
we demonstrate that high-performance RCPs can be achieved by combining multiple types of reversible interactions with reinforcement from carefully engineered
in situ
-formed phase-separated nanostructures. By tailoring the rigidity
deformability
and dynamic dissociability of these nanostructures
we obtained RCPs with strengths comparable to or exceeding those of conventional polymers
as well as materials with unique mechanical properties rarely achieved in traditional systems
such as high-strength
low-hysteresis hydrogels/ionogels
damage-resistant elastomers
and ultra-tough plastics with superior low-temperature impact resistance. Importantly
the dynamic nature of the crosslinking network imparts excellent healing
reprocessing
and recycling capabilities to these RCPs. We believe that RCPs open a new avenue for the development of high-performance sustain
able polymers.
Garcia J. M. ; Robertson M. L. The future of plastics recycling . Science , 2017 , 358 ( 6365 ), 870 - 872 . doi: 10.1126/science.aaq0324 http://dx.doi.org/10.1126/science.aaq0324
Geyer R. ; Jambeck J. R. ; Law K. L. Production, use, and fate of all plastics ever made . Sci. Adv. , 2017 , 3 ( 7 ), e 1700782 . doi: 10.1126/sciadv.1700782 http://dx.doi.org/10.1126/sciadv.1700782
Aoudia K. ; Azem S. ; Aït Hocine N. ; Gratton M. ; Pettarin V. ; Seghar S. Recycling of waste tire rubber: microwave devulcanization and incorporation in a thermoset resin . Waste Manag. , 2017 , 60 , 471 - 481 . doi: 10.1016/j.wasman.2016.10.051 http://dx.doi.org/10.1016/j.wasman.2016.10.051
Fouquey C. ; Lehn J. M. ; Levelut A. M. Molecular recognition directed self-assembly of supramolecular liquid crystalline polymers from complementary chiral components . Adv. Mater. , 1990 , 2 ( 5 ), 254 - 257 . doi: 10.1002/adma.19900020506 http://dx.doi.org/10.1002/adma.19900020506
Cordier P. ; Tournilhac F. ; Soulie-Ziakovic C. ; Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly . Nature , 2008 , 451 ( 7181 ), 977 - 980 . doi: 10.1038/nature06669 http://dx.doi.org/10.1038/nature06669
张希 , 王力彦 , 徐江飞 , 陈道勇 , 史林启 , 周永丰 , 沈志豪 . 聚合物超分子体系: 设计、组装与功能 . 高分子学报 , 2019 , 50 ( 10 ), 973 - 987 . doi: 10.11777/j.issn1000-3304.2019.19no6 http://dx.doi.org/10.11777/j.issn1000-3304.2019.19no6
Burnworth M. ; Tang L. M. ; Kumpfer J. R. ; Duncan A. J. ; Beyer F. L. ; Fiore G. L. ; Rowan S. J. ; Weder C. Optically healable supramolecular polymers . Nature , 2011 , 472 ( 7343 ), 334 - 337 . doi: 10.1038/nature09963 http://dx.doi.org/10.1038/nature09963
Qin B. ; Zhang S. ; Sun P. ; Tang B. H. ; Yin Z. H. ; Cao X. ; Chen Q. ; Xu J. F. ; Zhang X. Tough and multi-recyclable cross-linked supramolecular polyureas via incorporating noncovalent bonds into main-chains . Adv. Mater. , 2020 , 32 ( 36 ), 2000096 . doi: 10.1002/adma.202000096 http://dx.doi.org/10.1002/adma.202000096
Wang X. H. ; Li Y. X. ; Qian Y. H. ; Qi H. ; Li J. ; Sun J. Q. Mechanically robust atomic oxygen-resistant coatings capable of autonomously healing damage in low earth orbit space environment . Adv. Mater. , 2018 , 30 ( 36 ), 1803854 . doi: 10.1002/adma.201803854 http://dx.doi.org/10.1002/adma.201803854
Yanagisawa Y. ; Nan Y. L. ; Okuro K. ; Aida T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking . Science , 2018 , 359 ( 6371 ), 72 - 76 . doi: 10.1126/science.aam7588 http://dx.doi.org/10.1126/science.aam7588
Deng Y. X. ; Zhang Q. ; Feringa B. L. ; Tian H. ; Qu D. H. Toughening a self-healable supramolecular polymer by ionic cluster-enhanced iron-carboxylate complexes . Angew. Chem. Int. Ed. , 2020 , 59 ( 13 ), 5278 - 5283 . doi: 10.1002/anie.201913893 http://dx.doi.org/10.1002/anie.201913893
Liu K. ; Cheng L. ; Zhang N. B. ; Pan H. ; Fan X. W. ; Li G. F. ; Zhang Z. M. ; Zhao D. ; Zhao J. ; Yang X. ; Wang Y. M. ; Bai R. X. ; Liu Y. H. ; Liu Z. Y. ; Wang S. ; Gong X. L. ; Bao Z. N. ; Gu G. Y. ; Yu W. ; Yan X. Z. Biomimetic impact protective supramolecular polymeric materials enabled by quadruple H-bonding . J. Am. Chem. Soc. , 2021 , 143 ( 2 ), 1162 - 1170 . doi: 10.1021/jacs.0c12119 http://dx.doi.org/10.1021/jacs.0c12119
de Greef T. F. A. ; Meijer E. W. Supramolecular polymers . Nature , 2008 , 453 ( 7192 ), 171 - 173 . doi: 10.1038/453171a http://dx.doi.org/10.1038/453171a
Kloxin C. J. ; Scott T. F. ; Adzima B. J. ; Bowman C. N. Covalent adaptable networks (CANs): a unique paradigm in cross-linked polymers . Macromolecules , 2010 , 43 ( 6 ), 2643 - 2653 . doi: 10.1021/ma902596s http://dx.doi.org/10.1021/ma902596s
Montarnal D. ; Capelot M. ; Tournilhac F. ; Leibler L. Silica-like malleable materials from permanent organic networks . Science , 334 ( 6058 ), 965 - 968 . doi: 10.1126/science.1212648 http://dx.doi.org/10.1126/science.1212648
Li Y. ; Wang X. ; Sun J. Q. Layer-by-layer assembly for rapid fabrication of thick polymeric films . Chem. Soc. Rev. , 2012 , 41 ( 18 ), 5998 - 6009 . doi: 10.1039/c2cs35107b http://dx.doi.org/10.1039/c2cs35107b
LLi Y. ; Li L. ; Sun J. Q. Bioinspired self-healing superhydrophobic coatings . Angew. Chem. Int. Ed. , 2010 , 49 ( 35 ), 6129 - 6133 . doi: 10.1002/anie.201001258 http://dx.doi.org/10.1002/anie.201001258
Wang X. ; Liu F. ; Zheng X. W. ; Sun J. Q. Water-enabled self-healing of polyelectrolyte multilayer coatings . Angew. Chem. Int. Ed. , 2011 , 50 ( 48 ), 11378 - 11381 . doi: 10.1002/anie.201105822 http://dx.doi.org/10.1002/anie.201105822
Li Y. ; Chen S. S. ; Wu M. C. ; Sun J. Q. Polyelectrolyte multilayers impart healability to highly electrically conductive films . Adv. Mater. , 2012 , 24 ( 33 ), 4578 - 4582 . doi: 10.1002/adma.201201306 http://dx.doi.org/10.1002/adma.201201306
Chen D. D. ; Wu M. D. ; Li B. C. ; Ren K. F. ; Cheng Z. K. ; Ji J. ; Li Y. ; Sun J. Q. Layer-by-layer-assembled healable antifouling films . Adv. Mater. , 2015 , 27 ( 39 ), 5882 - 5888 . doi: 10.1002/adma.201501726 http://dx.doi.org/10.1002/adma.201501726
Wang Y. ; Liu X. K. ; Li S. H. ; Li T. Q. ; Song Y. ; Li Z. D. ; Zhang W. K. ; Sun J. Q. Transparent, healable elastomers with high mechanical strength and elasticity derived from hydrogen-bonded polymer complexes . ACS Appl. Mater. Interfaces , 2017 , 9 ( 34 ), 29120 - 29129 . doi: 10.1021/acsami.7b08636 http://dx.doi.org/10.1021/acsami.7b08636
Long T. J. ; Li Y. X. ; Fang X. ; Sun J. Q. Salt-mediated polyampholyte hydrogels with high mechanical strength, excellent self-healing property, and satisfactory electrical conductivity . Adv. Funct. Mater. , 2018 , 28 ( 44 ), 1804416 . doi: 10.1002/adfm.201804416 http://dx.doi.org/10.1002/adfm.201804416
Bao C. Y. ; Jiang Y. J. ; Zhang H. Y. ; Lu X. Y. ; Sun J. Q. Room-temperature self-healing and recyclable tough polymer composites using nitrogen-coordinated boroxines . Adv. Funct. Mater. , 2018 , 28 ( 23 ), 1800560 . doi: 10.1002/adfm.201800560 http://dx.doi.org/10.1002/adfm.201800560
Li Y. X. ; Liang L. ; Liu C. P. ; Li Y. ; Xing W. ; Sun J. Q. Self-healing proton-exchange membranes composed of nafion-poly(vinyl alcohol) complexes for durable direct methanol fuel cells . Adv. Mater. , 2018 , 30 ( 25 ), 1707146 . doi: 10.1002/adma.201707146 http://dx.doi.org/10.1002/adma.201707146
Yuan T. ; Cui X. M. ; Liu X. K. ; Qu X. X. ; Sun J. Q. Highly tough, stretchable, self-healing, and recyclable hydrogels reinforced by in situ -formed polyelectrolyte complex nanoparticles . Macromolecules , 2019 , 52 ( 8 ), 3141 - 3149 . doi: 10.1021/acs.macromol.9b00053 http://dx.doi.org/10.1021/acs.macromol.9b00053
An N. ; Wang X. H. ; Li Y. X. ; Zhang L. ; Lu Z. Y. ; Sun J. Q. Healable and mechanically super-strong polymeric composites derived from hydrogen-bonded polymeric complexes . Adv. Mater. , 2019 , 31 ( 41 ), 1904882 . doi: 10.1002/adma.201904882 http://dx.doi.org/10.1002/adma.201904882
Li Y. X. ; Li S. H. ; Sun J. Q. Degradable poly(vinyl alcohol)-based supramolecular plastics with high mechanical strength in a watery environment . Adv. Mater. , 2021 , 33 ( 13 ), 2007371 . doi: 10.1002/adma.202007371 http://dx.doi.org/10.1002/adma.202007371
李懿轩 , 孙俊奇 . 基于聚合物复合物的自修复与可修复聚合物材料 . 高分子学报 , 2020 , 51 ( 8 ), 791 - 803 . doi: 10.11777/j.issn1000-3304.2020.20062 http://dx.doi.org/10.11777/j.issn1000-3304.2020.20062
An N. ; Zhu Y. L. ; Wang X. H. ; Li Y. X. ; Liu J. J. ; Fang X. ; Lu Z. Y. ; Yang B. ; Sun J. Q. Dual nanofillers-reinforced noncovalently cross-linked polymeric composites with unprecedented mechanical strength . CCS Chem. , 2023 , 5 ( 10 ), 2312 - 2323 . doi: 10.31635/ccschem.022.202202496 http://dx.doi.org/10.31635/ccschem.022.202202496
Wang X. H. ; Zhan S. N. ; Lu Z. Y. ; Li J. ; Yang X. ; Qiao Y. N. ; Men Y. F. ; Sun J. Q. Healable, recyclable, and mechanically tough polyurethane elastomers with exceptional damage tolerance . Adv. Mater. , 2020 , 32 ( 50 ), 2005759 . doi: 10.1002/adma.202005759 http://dx.doi.org/10.1002/adma.202005759
Wang X. H. ; Sun J. Q. Engineering of reversibly cross-linked elastomers toward flexible and recyclable elastomer/carbon fiber composites with extraordinary tearing resistance . Adv. Mater. , 2024 , 36 ( 35 ), 2406252 . doi: 10.1002/adma.202406252 http://dx.doi.org/10.1002/adma.202406252
Guo Z. W. ; Lu X. Y. ; Wang X. H. ; Li X. ; Li J. ; Sun J. Q. Engineering of chain rigidity and hydrogen bond cross-linking toward ultra-strong, healable, recyclable, and water-resistant elastomers . Adv. Mater. , 2023 , 35 ( 21 ), 2300286 . doi: 10.1002/adma.202300286 http://dx.doi.org/10.1002/adma.202300286
Wang W. J. ; Li Y. X. ; Ma Z. W. ; Chen Q. ; Zhang W. K. ; Yang T. T. ; Xie Y. H. ; Sun J. Q. Ultra-tough poly(urea-urethane) plastics with superior impact resistance for cryogenic applications . Adv. Mater. , 2025 , 37 ( 39 ), 2509421 . doi: 10.1002/adma.202509421 http://dx.doi.org/10.1002/adma.202509421
Li T. Q. ; Li X. ; Yang J. M. ; Sun H. X. ; Sun J. Q. Healable ionic conductors with extremely low-hysteresis and high mechanical strength enabled by hydrophobic domain-locked reversible interactions . Adv. Mater. , 2023 , 35 ( 51 ), 2307990 . doi: 10.1002/adma.202307990 http://dx.doi.org/10.1002/adma.202307990
Fang X. ; Qing Y. N. ; Lou Y. ; Gao X. ; Wang H. ; Wang X. Y. ; Li Y. X. ; Qin Y. G. ; Sun J. Q. Degradable, recyclable, water-resistant, and eco-friendly poly(vinyl alcohol)-based supramolecular plastics . ACS Mater. Lett. , 2022 , 4 ( 6 ), 1132 - 1138 . doi: 10.1021/acsmaterialslett.2c00283 http://dx.doi.org/10.1021/acsmaterialslett.2c00283
Li Y. X. ; Wang X. H. ; Fang X. ; Sun J. Q. Noncovalently cross-linked polymeric materials reinforced by well-designed in situ-formed nanofillers . Langmuir , 2022 , 38 ( 30 ), 9050 - 9063 . doi: 10.1021/acs.langmuir.2c01380 http://dx.doi.org/10.1021/acs.langmuir.2c01380
李思衡 , 李懿轩 , 王钰婷 , 孙俊奇 . 可修复纤维损伤的防霜和防雾聚合物复合膜 . 高分子学报 , 2023 ( 5 ), 697 - 707 . doi: 10.11777/j.issn1000-3304.2022.22424 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22424
Lu X. Y. ; Xie P. ; Li X. ; Li T. Q. ; Sun J. Q. Acid-cleavable aromatic polymers for the fabrication of closed-loop recyclable plastics with high mechanical strength and excellent chemical resistance . Angew. Chem. , 2024 , 136 ( 7 ), e 202316453 . doi: 10.1002/ange.202316453 http://dx.doi.org/10.1002/ange.202316453
Decher G. ; Hong J. D. Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces . Makromol. Chem. Macromol. Symp. , 1991 , 46 ( 1 ), 321 - 327 . doi: 10.1002/masy.19910460145 http://dx.doi.org/10.1002/masy.19910460145
Liu X. K. ; Dai B. Y. ; Zhou L. ; Sun J. Q. Polymeric complexes as building blocks for rapid fabrication of layer-by-layer assembled multilayer films and their application as superhydrophobic coatings . J. Mater. Chem. , 2009 , 19 ( 4 ), 497 - 504 . doi: 10.1039/b817467a http://dx.doi.org/10.1039/b817467a
Guo Y. M. ; Geng W. ; Sun J. Q. Layer-by-layer deposition of polyelectrolyte-polyelectrolyte complexes for multilayer film fabrication . Langmuir , 2009 , 25 ( 2 ), 1004 - 1010 . doi: 10.1021/la803479a http://dx.doi.org/10.1021/la803479a
Li Y. ; Chen S. S. ; Wu M. C. ; Sun J. Q. All spraying processes for the fabrication of robust, self-healing, superhydrophobic coatings . Adv. Mater. , 2014 , 26 ( 20 ), 3344 - 3348 . doi: 10.1002/adma.201306136 http://dx.doi.org/10.1002/adma.201306136
Wu M. C. ; Li Y. ; An N. ; Sun J. Q. Applied voltage and near-infrared light enable healing of superhydrophobicity loss caused by severe scratches in conductive superhydrophobic films . Adv. Funct. Mater. , 2016 , 26 ( 37 ), 6777 - 6784 . doi: 10.1002/adfm.201601979 http://dx.doi.org/10.1002/adfm.201601979
Chen S. S. ; Li X. ; Li Y. ; Sun J. Q. Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric . ACS Nano , 2015 , 9 ( 4 ), 4070 - 4076 . doi: 10.1021/acsnano.5b00121 http://dx.doi.org/10.1021/acsnano.5b00121
Li X. ; Li Y. ; Guan T. T. ; Xu F. C. ; Sun J. Q. Durable, highly electrically conductive cotton fabrics with healable superamphiphobicity . ACS Appl. Mater. Interfaces , 2018 , 10 ( 14 ), 12042 - 12050 . doi: 10.1021/acsami.8b01279 http://dx.doi.org/10.1021/acsami.8b01279
Zhou H. ; Wang H. X. ; Niu H. T. ; Gestos A. ; Lin T. Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles . Adv. Funct. Mater. , 2013 , 23 ( 13 ), 1664 - 1670 . doi: 10.1002/adfm.201202030 http://dx.doi.org/10.1002/adfm.201202030
Wang H. X. ; Xue Y. H. ; Ding J. ; Feng L. F. ; Wang X. G. ; Lin T. Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane . Angew. Chem. Int. Ed. , 2011 , 50 ( 48 ), 11433 - 11436 . doi: 10.1002/anie.201105069 http://dx.doi.org/10.1002/anie.201105069
Wang Y. ; Li T. Q. ; Li S. H. ; Sun J. Q. Antifogging and frost-resisting polyelectrolyte coatings capable of healing scratches and restoring transparency . Chem. Mater. , 2015 , 27 ( 23 ), 8058 - 8065 . doi: 10.1021/acs.chemmater.5b03705 http://dx.doi.org/10.1021/acs.chemmater.5b03705
Lu X. Y. ; Bao C. Y. ; Xie P. ; Guo Z. W. ; Sun J. Q. Solution-processable and thermostable super-strong poly(aryl ether ketone) supramolecular thermosets cross-linked with dynamic boroxines . Adv. Funct. Mater. , 2021 , 31 ( 34 ), 2103061 . doi: 10.1002/adfm.202103061 http://dx.doi.org/10.1002/adfm.202103061
Fang X. ; Sun J. Q. One-step synthesis of healable weak-polyelectrolyte-based hydrogels with high mechanical strength, toughness, and excellent self-recovery . ACS Macro Lett. , 2019 , 8 ( 5 ), 500 - 505 . doi: 10.1021/acsmacrolett.9b00189 http://dx.doi.org/10.1021/acsmacrolett.9b00189
Li S. H. ; Li Y. X. ; Wang Y. T. ; Pan H. Y. ; Sun J. Q. Highly stretchable, elastic, healable, and ultra-durable polyvinyl alcohol-based ionic conductors capable of safe disposal . CCS Chem. , 2022 , 4 ( 9 ), 3170 - 3180 . doi: 10.31635/ccschem.021.202101360 http://dx.doi.org/10.31635/ccschem.021.202101360
Lu X. Y. ; Luo Y. C. ; Li Y. X. ; Bao C. Y. ; Wang X. H. ; An N. ; Wang G. B. ; Sun J. Q. Polymeric complex nanoparticles enable the fabrication of mechanically superstrong and recyclable poly(aryl ether sulfone)-based polymer composites . CCS Chem. , 2020 , 2 ( 1 ), 524 - 532 . doi: 10.31635/ccschem.019.201900052 http://dx.doi.org/10.31635/ccschem.019.201900052
Wang X. H. ; Wang Y. L. ; Yang X. ; Lu Z. Y. ; Men Y. F. ; Sun J. Q. Skin-inspired healable conductive elastomers with exceptional strain-adaptive stiffening and damage tolerance . Macromolecules , 2021 , 54 ( 23 ), 10767 - 10775 . doi: 10.1021/acs.macromol.1c01976 http://dx.doi.org/10.1021/acs.macromol.1c01976
Guan T. T. ; Wang X. H. ; Zhu Y. L. ; Qian L. ; Lu Z. Y. ; Men Y. F. ; Li J. ; Wang Y. T. ; Sun J. Q. Mechanically robust skin-like poly(urethane-urea) elastomers cross-linked with hydrogen-bond arrays and their application as high-performance ultrastretchable conductors . Macromolecules , 2022 , 55 ( 13 ), 5816 - 5825 . doi: 10.1021/acs.macromol.2c00492 http://dx.doi.org/10.1021/acs.macromol.2c00492
Li Z. Q. ; Zhu Y. L. ; Niu W. W. ; Yang X. ; Jiang Z. Y. ; Lu Z. Y. ; Liu X. K. ; Sun J. Q. Healable and recyclable elastomers with record-high mechanical robustness, unprecedented crack tolerance, and superhigh elastic restorability . Adv. Mater. , 2021 , 33 ( 27 ), 2101498 . doi: 10.1002/adma.202101498 http://dx.doi.org/10.1002/adma.202101498
Wang X. Y. ; Yang Z. H. ; Zhang Y. M. ; Wang T. M. ; Li S. ; Wang Q. H. ; Zhang X. R. Syncretic of soft, hard, and rigid segments cultivate high-performance elastomer . Chem. Eng. J. , 2024 , 495 , 153466 . doi: 10.1016/j.cej.2024.153466 http://dx.doi.org/10.1016/j.cej.2024.153466
0
Views
180
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号