

浏览全部资源
扫码关注微信
中南大学化学化工学院 长沙 410083
Received:14 October 2025,
Accepted:12 December 2025,
Published Online:31 December 2025,
Published:20 January 2026
移动端阅览
张驰, 唐俊涛, 顾帅, 邵鹏鹏, 喻桂朋. 高性能多孔有机聚合物绿色制备与加工. 高分子学报, 2026, 57(1), 109-118.
Zhang, C.; Tang, J. T.; Gu, S.; Shao, P. P.; Yu, G. P. Green preparation and processing of high-performance porous organic polymers. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 109-118.
张驰, 唐俊涛, 顾帅, 邵鹏鹏, 喻桂朋. 高性能多孔有机聚合物绿色制备与加工. 高分子学报, 2026, 57(1), 109-118. DOI: 10.11777/j.issn1000-3304.2025.25265. CSTR: 32057.14.GFZXB.2025.7537.
Zhang, C.; Tang, J. T.; Gu, S.; Shao, P. P.; Yu, G. P. Green preparation and processing of high-performance porous organic polymers. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 109-118. DOI: 10.11777/j.issn1000-3304.2025.25265. CSTR: 32057.14.GFZXB.2025.7537.
多孔有机聚合物材料(POPs)具有化学稳定性好、比表面积高以及易功能化修饰等特点,在气体吸附与分离和绿色催化等领域展现出巨大的应用前景. 目前,大多数POPs制备采用有机溶剂热法,过程繁琐复杂、条件苛刻,其产品往往为不溶解不熔融的粉末,难以加工成型,限制了其进一步发展和实际应用. 本综述从功能导向的POPs分子设计和调控出发,系统阐释绿色制备与加工成型的核心原则,重点介绍了当前POPs绿色制备与加工的研究进展,并探讨了POPs绿色制备与加工的未来发展方向及重点.
High-performance porous organic polymers (POPs) are advanced porous materials with three-dimensional network structures and tunable functionalities
formed by covalent bonding of organic monomers. They possess excellent properties such as high chemical stability
large specific surface area
and easy functional modification
making them highly effective in gas adsorption
catalytic reactions
environmental remediation
and addressing energy scarcity
thus becoming key materials for solving global challenges. However
their development toward controllable preparation and stable industrial production is hindered by critical bottlenecks: traditional synthesis relies on toxic
highly volatile organic solvents (
e.g.
dichloromethane)
harsh conditions (120-250 ℃
5-10 MPa) causing high energy consumption and long reaction cycles
while most POPs are insoluble and infusible powders due to covalently cross-linked rigid networks
making precise structural regulation and subsequent processing difficult. Driven by the "dual carbon" goal and the need for sustainable development
green preparation (focused on "raw materials→primary POP products") and processing (focused on "primary POP products→end-use functional materials") of POPs have become essential to overcome these bottlenecks. This review first elaborates on the core principles of green preparation and processing: using renewable resources (biomass-derived monomers
CO
2
) as raw materials
adopting mild conditions (room temperature
atmospheric pressure) to reduc
e energy consumption
designing recyclable routes to minimize waste
and optimizing reactions to improve atomic economy. It then addresses current challenges (complex fabrication
uncontrollable synthesis
poor processability
unclear structure-function relationships) by highlighting latest progress: aqueous sol-gel synthesis and molten salt polymerization for green preparation; solution processing strategies (charge-induced dispersion
thermally induced hypercrosslinking) and dynamic covalent bond-based recycling/reshaping for green processing; and enhanced photocatalytic efficiency/selectivity
via
heterojunction construction. Finally
future directions are proposed: expanding renewable raw materials and continuous processes for low-cost large-scale production; applying AI/machine learning to shift from "experience-driven" to "data-driven" research; extending external field-assisted technologies (ultrasound
electric/magnetic/light fields); and developing degradable materials and closed-loop recycling to achieve full-life-cycle greenization
aiming to promote POPs' industrial application and their role in addressing global environmental and energy issues.
Huang J. T. ; Peng Q. F. ; Liu C. L. ; Ye Y. X. ; Chen L. J. ; Lv Y. C. ; Yang Y. S. ; Chen S. M. ; Xiang F. H. ; Zhang H. ; Zhang Z. J. ; Xiang S. C. Microporous nitrogen-rich polymers via ullmann coupling reaction for selective adsorption of C 2 H 2 over CH 4 . Chin. J. Chem., 2023, 41 ( 5 ), 514 - 520 . doi: 10.1002/cjoc.202200397 http://dx.doi.org/10.1002/cjoc.202200397
Jia J. T. ; Bhatt P. M. ; Tavares S. R. ; Abou-Hamad E. ; Belmabkhout Y. ; Jiang H. ; Mallick A. ; Parvatkar P. T. ; Maurin G. ; Eddaoudi M. Porous organic polymers for efficient and selective SO 2 capture fromCO2-rich flue gas. Angew. Chem. Int. Ed. , 2024 , 63 ( 26 ), e 202318844 . doi: 10.1002/anie.202318844 http://dx.doi.org/10.1002/anie.202318844
Yang D. H. ; Tao Y. ; Ding X. S. ; Han B. H. Porous organic polymers for electrocatalysis . Chem. Soc. Rev. , 2022 , 51 ( 2 ), 761 - 791 . doi: 10.1039/d1cs00887k http://dx.doi.org/10.1039/d1cs00887k
Cheng Y. ; Li Y. X. ; Liu C. H. ; Zhu Y. Y. ; Lin W. B. Diaryl dihydrophenazine-based porous organic polymers enhance synergistic catalysis in visible-light-driven organic transformations . Angew. Chem. Int. Ed. , 2023 , 62 ( 41 ), e 202310470 . doi: 10.1002/anie.202310470 http://dx.doi.org/10.1002/anie.202310470
Li G. ; Noruzi E. B. ; Yang L. ; Xu W. W. ; Qu H. N. ; Ma C. G. ; Zhang H. F. ; He Q. ; Periyasami G. ; Li H. B. Bioinspired hierarchical porous polymers for highly efficient and selective removal of methyl parathion through host-guest interaction . Sci. China Chem. , 2025 , 68 ( 5 ), 2146 - 2159 . doi: 10.1007/s11426-024-2351-0 http://dx.doi.org/10.1007/s11426-024-2351-0
Xin L. ; Jia A. Y. ; Liu Z. ; Shi C. ; Liu Z. S. ; Hong M. ; Li Y. X. Covalent organic polymer-based sodium alginate composite beads: decontamination of ciprofloxacin micro-polluted groundwater in a PRB system . Sep. Purif. Technol. , 2025 , 354 , 128988 . doi: 10.1016/j.seppur.2024.128988 http://dx.doi.org/10.1016/j.seppur.2024.128988
Xin X. Y. ; Zhao B. ; Yue J. S. ; Kong D. B. ; Zhou S. K. ; Huang X. X. ; Wang B. ; Zhi L. J. ; Xiao Z. C. A universal strategy for producing 2D functional carbon-rich materials from 2D porous organic polymers for dual-carbon lithium-ion capacitors . New Carbon Mater. , 2023 , 38 ( 5 ), 898 - 912 . doi: 10.1016/s1872-5805(23)60760-7 http://dx.doi.org/10.1016/s1872-5805(23)60760-7
Shi Y. ; Wang Y. ; Meng N. ; Liao Y. Photothermal conversion porous organic polymers: design, synthesis, and applications . Small Methods , 2024 , 8 ( 10 ), 2301554 .
Li K. M. ; Su Y. L. ; Sun S. H. ; Sirotkin N. ; Agafonov A. ; Lv K. L. ; Xue J. B. ; Liang S. X. ; Tian Y. T. ; Li Z. F. ; Tian Y. ; Xiong X. Q. Efficient crystallization of conjugated microporous polymers to boost photocatalytic CO 2 reduction . Carbon Energy , 2025 , 7 ( 9 ), e 70025 . doi: 10.1002/cey2.70025 http://dx.doi.org/10.1002/cey2.70025
Wang Z. Q. ; Li M. H. ; Liang S. ; Kong Y. X. ; Wang C. Y. ; Li L. ; Xu J. J. ; Yang Y. W. Regulating enol-to-keto tautomerization of pillararene-based conjugated macrocycle polymers for H 2 O 2 photosynthesis . J. Am. Chem. Soc. , 2025 , 147 ( 16 ), 13618 - 13628 . doi: 10.1021/jacs.5c00768 http://dx.doi.org/10.1021/jacs.5c00768
Liang J. ; Huang Y. B. ; Cao R. Metal-organic frameworks and porous organic polymers for sustainable fixation of carbon dioxide into cyclic carbonates . Coord. Chem. Rev. , 2019 , 378 , 32 - 65 . doi: 10.1016/j.ccr.2017.11.013 http://dx.doi.org/10.1016/j.ccr.2017.11.013
Dan Q. Y. ; Chiu Y. ; Lee N. ; Pereira J. H. ; Rad B. ; Zhao X. X. ; Deng K. ; Rong Y. O. ; Zhan C. J. ; Chen Y. ; Cheong S. ; Li C. Y. ; Gin J. W. ; Rodrigues A. ; Northen T. R. ; Backman T. W. H. ; Baidoo E. E. K. ; Petzold C. J. ; Adams P. D. ; Keasling J. D. A polyketide-based biosynthetic platform for diols, amino alcohols and hydroxy acids . Nat. Catal. , 2025 , 8 ( 2 ), 147 - 161 . doi: 10.1038/s41929-025-01299-5 http://dx.doi.org/10.1038/s41929-025-01299-5
毛亚辉 , 王思棋 , 李茂盛 , 陶友华 . 二乙基环状赖氨酸单体的合成及其与己内酰胺的共聚合研究 . 高分子学报 , 2024 , 55 ( 12 ), 1680 - 1685 .
闫岩 , 张群亮 , 陶友华 . 二丙基环状赖氨酸单体合成及其季铵盐聚合物抗菌性能研究 . 高分子学报 , 2025 , 56 ( 7 ), 1150 - 1158 .
Luo D. ; Shi T. H. ; Li Q. H. ; Xu Q. Q. ; Strømme M. ; Zhang Q. F. ; Xu C. Green , general and low-cost synthesis of porous organic polymers in sub-kilogram scale for catalysis and CO 2 capture . Angew. Chem. Int. Ed., 2023, 62 ( 27 ), e 202305225 . doi: 10.1002/anie.202305225 http://dx.doi.org/10.1002/anie.202305225
Song Y. G. ; Norris F. ; Hinchcliffe D. ; Xu Y. ; Zhang X. L. ; Nockemann P. Ionic liquid-assisted synthesis of mesoporous polymers and carbon materials: the self-assembly mechanism . Nanoscale , 2022 , 14 ( 38 ), 14212 - 14222 . doi: 10.1039/d2nr02875a http://dx.doi.org/10.1039/d2nr02875a
孙江 , 彭兰 , 魏大程 . 基于超临界溶剂热法的共价有机框架单晶超快制备 . 高分子学报 , 2024 , 55 ( 7 ), 814 - 825 .
Amrute A. P. ; De Bellis J. ; Felderhoff M. ; Schüth F. Mechanochemical synthesis of catalytic materials . Chem. Eur. J. , 2021 , 27 ( 23 ), 6819 - 6847 . doi: 10.1002/chem.202004583 http://dx.doi.org/10.1002/chem.202004583
Zhang P. H. ; Wang Z. F. ; Wang S. ; Wang J. ; Liu J. J. ; Wang T. ; Chen Y. ; Cheng P. ; Zhang Z. J. Fabricating industry-compatible olefin-linked COF resins for oxoanion pollutant scavenging . Angew. Chem. Int. Ed. , 2022 , 61 ( 52 ), e 202213247 . doi: 10.1002/anie.202213247 http://dx.doi.org/10.1002/anie.202213247
Zhang Y. S. ; Mao T. H. ; Hao L. Q. ; Sun T. K. ; Wang T. H. ; Cheng P. ; Chen Y. ; Wang Z. F. ; Zhang Z. J. Solvent-free synthesis of C=N linked two-dimensional covalent organic frameworks . Macromol. Rapid Commun. , 2023 , 44 ( 11 ), 2200722 . doi: 10.1002/marc.202200722 http://dx.doi.org/10.1002/marc.202200722
Wang Z. F. ; Zhang Y. S. ; Wang T. ; Hao L. Q. ; Lin E. ; Chen Y. ; Cheng P. ; Zhang Z. J. Organic flux synthesis of covalent organic frameworks . Chem , 2023 , 9 ( 8 ), 2178 - 2193 . doi: 10.1016/j.chempr.2023.03.026 http://dx.doi.org/10.1016/j.chempr.2023.03.026
Wang Z. F. ; Zhang Y. S. ; Liu J. J. ; Chen Y. ; Cheng P. ; Zhang Z. J. Flux synthesis of two-dimensional covalent organic frameworks . Nat. Protoc. , 2024 , 19 ( 12 ), 3489 - 3519 . doi: 10.1038/s41596-024-01028-5 http://dx.doi.org/10.1038/s41596-024-01028-5
Song B. ; Zhang L. ; Sun J. W. ; Lam J. W. Y. ; Tang B. Z. In situ synthesis of AIEgen-based porous organic polymer films by interfacial amino-yne click polymerization for efficient light-harvesting . Angew. Chem. Int. Ed. , 2023 , 62 ( 18 ), e 202302543 . doi: 10.1002/anie.202302543 http://dx.doi.org/10.1002/anie.202302543
Hu Z. Y. ; Hu F. ; Deng L. F. ; Yang Y. M. ; Xie Q. J. ; Gao Z. ; Pan C. Y. ; Jin Y. H. ; Tang J. T. ; Yu G. P. ; Zhang W. Reprocessible triketoenamine-based vitrimers with closed-loop recyclability . Angew. Chem. Int. Ed. , 2023 , 62 ( 34 ), e 202306039 . doi: 10.1002/anie.202306039 http://dx.doi.org/10.1002/anie.202306039
Kong X. Y. ; Wu Z. Q. ; Strømme M. ; Xu C. Ambient aqueous synthesis of imine-linked covalent organic frameworks (COFs) and fabrication of freestanding cellulose Nanofiber@COF nanopapers . J. Am. Chem. Soc. , 2024 , 146 ( 1 ), 742 - 751 . doi: 10.1021/jacs.3c10691 http://dx.doi.org/10.1021/jacs.3c10691
Gao H. M. ; Li Q. Y. ; Ren S. J. Progress on CO 2 capture by porous organic polymers . Curr. Opin. Green Sustainable Chem. , 2019 , 16 , 33 - 38 . doi: 10.1016/j.cogsc.2018.11.015 http://dx.doi.org/10.1016/j.cogsc.2018.11.015
Song Y. P. ; Zhu C. J. ; Ma S. Q. Advanced porous organic polymer membranes: design, fabrication, and energy-saving applications . EnergyChem , 2022 , 4 ( 4 ), 100079 . doi: 10.1016/j.enchem.2022.100079 http://dx.doi.org/10.1016/j.enchem.2022.100079
Hu J. Y. ; Huang Z. Y. ; Liu Y. Beyond solvothermal: alternative synthetic methods for covalent organic frameworks . Angew. Chem. Int. Ed. , 2023 , 62 ( 37 ), e 202306999 . doi: 10.1002/anie.202306999 http://dx.doi.org/10.1002/anie.202306999
Liu X. L. ; Wang A. ; Wang C. P. ; Li J. L. ; Zhang Z. Y. ; Al-Enizi A. M. ; Nafady A. ; Shui F. ; You Z. F. ; Li B. Y. ; Wen Y. B. ; Ma S. Q. A general large-scale synthesis approach for crystalline porous materials . Nat. Commun. , 2023 , 14 , 7022 . doi: 10.1038/s41467-023-42833-y http://dx.doi.org/10.1038/s41467-023-42833-y
Hu F. ; Hu Z. Y. ; Liu Y. F. ; Tam K. C. ; Liang R. R. ; Xie Q. J. ; Fan Z. W. ; Pan C. Y. ; Tang J. T. ; Yu G. P. ; Zhang W. Aqueous sol-gel synthesis and shaping of covalent organic frameworks . J. Am. Chem. Soc. , 2023 , 145 ( 50 ), 27718 - 27727 . doi: 10.1021/jacs.3c10053 http://dx.doi.org/10.1021/jacs.3c10053
Wu S. F. ; Liu Y. ; Yu G. P. ; Guan J. G. ; Pan C. Y. ; Du Y. ; Xiong X. ; Wang Z. G. Facile preparation of dibenzoheterocycle-functional nanoporous polymeric networks with high gas uptake capacities . Macromolecules , 2014 , 47 ( 9 ), 2875 - 2882 . doi: 10.1021/ma500080s http://dx.doi.org/10.1021/ma500080s
Fan Z. W. ; Liao Z. H. ; Zhang F. ; Huang Y. ; Pan C. Y. ; Gu S. ; Tang J. T. ; Wei B. S. ; Yuan J. Y. ; Yu G. P. Establishing covalent organic framework "A & B" gel via hydrogen bond exchange-induced microphase separation . Adv. Sci. , 2025 , 12 ( 42 ), e 08484 . doi: 10.1002/advs.202508484 http://dx.doi.org/10.1002/advs.202508484
Shao J. J. ; Huang L. ; Lou S. J. ; Ohno A. ; Yamada Y. M. A. ; Nishiura M. ; Murahashi T. ; Hou Z. M. Synthesis of rigid stepladder polymers via scandium-catalyzed polyspiroannulation of quinoline with alkyne . J. Am. Chem. Soc. , 2025 , 147 ( 2 ), 1416 - 1420 . doi: 10.1021/jacs.4c15046 http://dx.doi.org/10.1021/jacs.4c15046
左宏瑜 , 张卫懿 , 廖耀祖 . 液相剥离吡啶基共价有机框架纳米片组装成膜用于高效H 2 /CO 2 气体分离 . 高分子学报 , 2025 , 56 ( 6 ), 981 - 991 .
Fan Z. W. ; Tang J. T. ; Zhang W. ; Yuan J. Y. ; Gu S. ; Huang R. Y. ; Guo Q. P. ; Xie Q. J. ; Hu F. ; Zhang F. ; Wang Z. H. ; Pan C. Y. ; Yu G. P. Processable and recyclable covalent organic framework gel electrolytes . Adv. Mater. , 2025 , 37 ( 28 ), 2501223 . doi: 10.1002/adma.202501223 http://dx.doi.org/10.1002/adma.202501223
Wang L. L. ; Su Y. ; Gu C. Solution processing of cross-linked porous organic polymers . Acc. Mater. Res. , 2022 , 3 ( 10 ), 1049 - 1060 . doi: 10.1021/accountsmr.2c00130 http://dx.doi.org/10.1021/accountsmr.2c00130
0
Views
77
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号