

浏览全部资源
扫码关注微信
大连理工大学高分子材料系 大连 116024
Li-shuai Zong, E-mail: zongls@dlut.edu.cn
Received:16 October 2025,
Accepted:03 December 2025,
Published Online:07 January 2026,
Published:20 January 2026
移动端阅览
苏贝贝, 蒋涌泉, 高若彤, 宗立率, 王锦艳, 蹇锡高. 高性能低收缩3D打印介电油墨的制备与性能. 高分子学报, 2026, 57(1), 292-304.
Su, B. B.; Jiang, Y. Q.; Gao, R. T.; Zong, L. S.; Wang, J. Y.; Jian, X. G. Development and investigation of a high-performance, low-shrinkage dielectric ink for 3D printing. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 292-304.
苏贝贝, 蒋涌泉, 高若彤, 宗立率, 王锦艳, 蹇锡高. 高性能低收缩3D打印介电油墨的制备与性能. 高分子学报, 2026, 57(1), 292-304. DOI: 10.11777/j.issn1000-3304.2025.25268. CSTR: 32057.14.GFZXB.2025.7530.
Su, B. B.; Jiang, Y. Q.; Gao, R. T.; Zong, L. S.; Wang, J. Y.; Jian, X. G. Development and investigation of a high-performance, low-shrinkage dielectric ink for 3D printing. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 292-304. DOI: 10.11777/j.issn1000-3304.2025.25268. CSTR: 32057.14.GFZXB.2025.7530.
随着3D打印技术的迅速发展及其应用领域的不断拓展,对成型件尺寸稳定性的要求日益提高. 然而,紫外(UV)快速固化过程中的体积收缩问题严重限制了该技术的应用. 本研究采用多种双官能度乙烯基醚单体——二乙二醇二乙烯基醚(DVE2)、三乙二醇二乙烯基醚(DVE3)、1
4-丁二醇二乙烯基醚(BDOVE)和1
4-二甲基环己烷二乙烯基醚(CHDM),与聚氨酯丙烯酸酯(PUA)低聚物,以及活性稀释单体共混,通过自由基/阳离子混杂光固化体系构建三维网络结构,有效抑制了因应力集中引起的收缩. 乙烯基醚/丙烯酸酯混杂树脂体系表现出较低的固化收缩率. 其中,添加1
4-二甲基环己烷二乙烯基醚的PUA-CHDM树脂固化收缩率仅为7.31%,明显低于市售光敏树脂(约10%). 此外,该体系可在60 s内实现快速固化,并具备优异的机械性能(拉伸强度
>
70 MPa)和热稳定性(玻璃化转变温度
T
g
=227 ℃). 在15 GHz频率下,其介电常数(
D
k
)为2.72,介电损耗(
D
f
)为0.0159,选择PUA-CHDM为介电油墨通过与纳米银结合,打印出的电路导电性能良好. 本研究为高精度增材制造提供了一种集快速成型、高机械强度和优异介电性能于一体的光固化材料解决方案,在微电子封装和高频通信器件等精密制造领域显示出重要的应用前景.
With the rapid advancement of 3D printing technology and its expanding application fields
there is an increasing demand for dimensional stability in printed components. However
volume shrinkage during UV rapid curing significantly limits the applicability of this technology. A series of bifunctional vinyl ether monomers—di(ethylene glycol) divinyl ether (DVE2)
tri(ethylene glycol) divinyl ether (DVE3)
1
4-butanediol divinyl ether (BDOVE)
and 1
4-cyclohexanedimethanol divinyl ether (CHDM)—were blended with a poly(urethane acrylate) (PUA) oligomer and reactive diluent monomers. A free radical/cationic hybrid photopolymerization system was employed to construct a three-dimensional network
effectively suppressing shrinkage induced by stress concentration. The vinyl ether/acrylate hybrid resin systems exhibited relatively low curing shrinkage. Among them
the PUA-CHDM resin incorporating 1
4-cyclohexanedimethanol divinyl ether showed a curing shrinkage of only 7.14%
which is significantly lower than that of commercial photocurable resins (≈10%). In addition
this system achieves rapid curing within 60 s
along with excellent mechanical properties (tensile strength
>
70 MPa) and high thermal stability (glass transition temperature
T
g
=227 °C). At 15 GHz
it exhibited a dielectric constant (
D
k
) of 2.72 and a dielectric loss (
D
f
) of 0.0159. The PUA-CHDM formulation was selected as a dielectric ink and combined with nano-silver to produce printed circuits with good electrical conductivity. This work provides a photopolymer solution for high-precision additive manufacturing that integrates rapid curing
high mechanical strength
and superior dielectric properties
demonstrating promising potential for applications in m
icroelectronic packaging and high-frequency communication devices.
Wu H. ; Fahy W. P. ; Kim S. ; Kim H. ; Zhao N. ; Pilato L. ; Kafi A. ; Bateman S. ; Koo J. H. Recent developments in polymers/polymer nanocomposites for additive manufacturing . Prog. Mater. Sci. , 2020 , 111 , 100638 . doi: 10.1016/j.pmatsci.2020.100638 http://dx.doi.org/10.1016/j.pmatsci.2020.100638
Li R. ; Yang X. ; Li J. ; Shen Y. ; Zhang L. ; Lu R. ; Wang C. ; Zheng X. ; Chen H. ; Zhang T. Review on polymer composites with high thermal conductivity and low dielectric properties for electronic packaging . Mater. Today Phys. , 2022 , 22 , 100594 . doi: 10.1016/j.mtphys.2021.100594 http://dx.doi.org/10.1016/j.mtphys.2021.100594
Shi C. Q. ; Liu S. M. ; Li Y. ; Yuan Y. C. ; Zhao J. Q. ; Fu Y. Imparting low dielectric constant and high modulus to polyimides via synergy be tween coupled silsesquioxanes and crown ethers . Compos. Sci. Technol. , 2017 , 142 , 117 - 123 . doi: 10.1016/j.compscitech.2017.02.002 http://dx.doi.org/10.1016/j.compscitech.2017.02.002
Lu H. R. ; Li D. S. ; Zhang Y. ; Wu Z. F. ; Wang H. ; Liu S. L. ; Yan G. M. ; Yang J. ; Zhang G. Design of low dielectric constant and high transparent polyarylate containing spiral ring . Polymer , 2021 , 228 , 123948 . doi: 10.1016/j.polymer.2021.123948 http://dx.doi.org/10.1016/j.polymer.2021.123948
Wang W. C. ; Vora R. H. ; Kang E. T. ; Neoh K. G. ; Ong C. K. ; Chen L. F. . Nanoporous ultra-low- κ films prepared from fluorinated polyimide with grafted poly(acrylic acid) side chains . Adv. Mater. , 2004 , 16 ( 1 ), 54 - 57 . doi: 10.1002/adma.200305185 http://dx.doi.org/10.1002/adma.200305185
Zeng M. ; Luo H. Y. ; Feng Z. J. ; He N. N. ; Tang C. ; Chen J. B. ; Zeng D. L. ; Zhou Y. ; Shen Y. F. Structural design and polymerization of high-frequency low dielectric benzoxazine resins . ACS Appl. Polym. Mater. , 2024 , 6 ( 11 ), 6614 - 6626 . doi: 10.1021/acsapm.4c00891 http://dx.doi.org/10.1021/acsapm.4c00891
Huang H. S. ; Liao Y. C. Thermal and dielectric properties enhancement of photocurable acrylate polymers for digital light processing 3D printed electronics . J. Appl. Polym. Sci. , 2022 , 139 ( 18 ), 52070 . doi: 10.1002/app.52070 http://dx.doi.org/10.1002/app.52070
Bai X. Y. ; Luo L. P. ; Zhou H. Y. ; Wang J. X. . Novel phenolic modified acrylates: synthesis, characterization and application in 3D printing . Eur. Polym. J. , 2023 , 192 , 112075 . doi: 10.1016/j.eurpolymj.2023.112075 http://dx.doi.org/10.1016/j.eurpolymj.2023.112075
Liu S. ; Huang X. M. ; Peng S. Q. ; Zheng Y. L. ; Wu L. X. ; Weng Z. X. Study on the preparation of long-term stability core-shell particles/epoxy acrylate emulsion and toughening improvement for 3D printable UV-curable resin . J. Polym. Res. , 2023 , 30 ( 3 ), 122 . doi: 10.1007/s10965-023-03489-w http://dx.doi.org/10.1007/s10965-023-03489-w
Yin J. D. ; Zhang X. Q. ; Zan X. X. ; Wang J. X. Non-isocyanate carbamate acrylates: synthesis , characterization, and applications in UV 3 D printing. J. Polym. Sci., 2025, 63 ( 2 ), 417 - 428 . doi: 10.1002/pol.20240727 http://dx.doi.org/10.1002/pol.20240727
Li Y. X. ; Ren X. Y. ; Zhu L. ; Li C. M. ; Lin T. Synthesis and characterization of polyurethane acrylate with bio-oil modification for photo-curing 3D printed flexible structures . Polymer , 2024 , 306 , 127225 . doi: 10.1016/j.polymer.2024.127225 http://dx.doi.org/10.1016/j.polymer.2024.127225
Kainz M. ; Haudum S. ; Guillén E. ; Brüggemann O. ; Höller R. ; Frommwald H. ; Dehne T. ; Sittinger M. ; Tupe D. ; Major Z. ; Stubauer G. ; Griesser T. ; Teasdale I. 3 D inkjet printing of biomaterials with solvent-free, thiol-yne-based photocurable inks . Macromol. Mater. Eng. , 2024 , 309 ( 5 ), 2400028 . doi: 10.1002/mame.202400028 http://dx.doi.org/10.1002/mame.202400028
Li L. L. ; Pan L. J. ; Ma Z. ; Yan K. ; Cheng W. ; Shi Y. ; Yu G. H. All inkjet-printed amperometric multiplexed biosensors based on nanostructured conductive hydrogel electrodes . Nano Lett. , 2018 , 18 ( 6 ), 3322 - 3327 . doi: 10.1021/acs.nanolett.8b00003 http://dx.doi.org/10.1021/acs.nanolett.8b00003
Wang M. Q. ; Ye C. ; Yang Y. R. ; Mukasa D. ; Wang C. R. ; Xu C. H. ; Min J. H. ; Solomon S. A. ; Tu J. B. ; Shen G. F. ; Tang S. S. ; Hsiai T. K. ; Li Z. P. ; McCune J. S. ; Gao W. Printable molecule-selective core-shell nanoparticles for wearable and implantable sensing . Nat. Mater. , 2025 , 24 ( 4 ), 589 - 598 . doi: 10.1038/s41563-024-02096-4 http://dx.doi.org/10.1038/s41563-024-02096-4
Magazine R. ; van Bochove B. ; Borandeh S. ; Seppälä J. 3 D inkjet-printing of photo-crosslinkable resins for microlens fabrication . Addit. Manuf. , 2022 , 50 , 102534 . doi: 10.1016/j.addma.2021.102534 http://dx.doi.org/10.1016/j.addma.2021.102534
Robin M. ; Kuai W. L. ; Amela-Cortes M. ; Cordier S. ; Molard Y. ; Mohammed-Brahim T. ; Jacques E. ; Harnois M. Epoxy based ink as versatile material for inkjet-printed devices . ACS Appl. Mater. Interfaces , 2015 , 7 ( 39 ), 21975 - 21984 . doi: 10.1021/acsami.5b06678 http://dx.doi.org/10.1021/acsami.5b06678
Derby B. Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution . Annu. Rev. Mater. Res. , 2010 , 40 , 395 - 414 . doi: 10.1146/annurev-matsci-070909-104502 http://dx.doi.org/10.1146/annurev-matsci-070909-104502
Bakhshi H. ; Kuang G. X. ; Wieland F. ; Meyer W. Photo-curing kinetics of 3D-printing photo-inks based on urethane-acrylates . Polymers , 2022 , 14 ( 15 ), 2974 . doi: 10.3390/polym14152974 http://dx.doi.org/10.3390/polym14152974
Zhong L. ; Xia M. ; Zhao Q. ; Zhang M. H. ; Hou X. D. ; Ren Y. P. ; He N. ; Liu R. B. ; Luo Y. J. Synthesis and photopolymerization kinetics of acrylate-terminated polyether for additive manufacturing . Polymer , 2025 , 319 , 128019 . doi: 10.1016/j.polymer.2025.128019 http://dx.doi.org/10.1016/j.polymer.2025.128019
Iedema P. D. ; Schamböck V. ; Boonen H. ; van der Linden M. N. ; Willemse R. Photocuring of di-acrylate in presence of oxygen . Chem. Eng. Sci. , 2019 , 207 , 130 - 144 . doi: 10.1016/j.ces.2019.05.056 http://dx.doi.org/10.1016/j.ces.2019.05.056
Hu Y. ; Li Z. K. ; Huang Q. ; Jia P. Y. ; Hu L. H. ; Zhang M. ; Zhou Y. H. Low volume shrinkage, high bio-based, and UV-curable coatings from castor oil-based reactive diluent via a one-step reaction . Ind. Crops Prod. , 2024 , 209 , 117951 . doi: 10.1016/j.indcrop.2023.117951 http://dx.doi.org/10.1016/j.indcrop.2023.117951
Li S. Y. ; Cui Y. H. ; Li J. J. Thiol-terminated hyperbranched polymer for DLP 3printingD: performance evaluation of a low shrinkage photosensitive resin. J. Appl. Polym. Sci. , 2021 , 138 ( 22 ), 50525 . doi: 10.1002/app.50525 http://dx.doi.org/10.1002/app.50525
Fang Y. ; Zou Y. Q. Synthesis and photo-curing behaviors of silicon-containing (vinyl ether)-(allyl ether) hybrid monomers . Polym. Int. , 2013 , 62 ( 11 ), 1624 - 1633 . doi: 10.1002/pi.4459 http://dx.doi.org/10.1002/pi.4459
Marx P. ; Romano A. ; Roppolo I. ; Chemelli A. ; Mühlbacher I. ; Kern W. ; Chaudhary S. ; Andritsch T. ; Sangermano M. ; Wiesbrock F. 3 D-printing of high-κ thiol-ene resins with spiro-orthoesters as anti-shrinkage additive . Macromol. Mater. Eng. , 2019 , 304 ( 12 ), 1900515 . doi: 10.1002/mame.201900515 http://dx.doi.org/10.1002/mame.201900515
Iervolino F. ; Suriano R. ; Scolari M. ; Gelmi I. ; Castoldi L. ; Levi M. Inkjet printing of a benzocyclobutene-based polymer as a low-k material for electronic applications . ACS Omega , 2021 , 6 ( 24 ), 15892 - 15902 . doi: 10.1021/acsomega.1c01488 http://dx.doi.org/10.1021/acsomega.1c01488
Zhang F. ; Tuck C. ; Hague R. ; He Y. F. ; Saleh E. ; Li Y. ; Sturgess C. ; Wildman R. Inkjet printing of polyimide insulators for the 3D printing of dielectric materials for microelectronic applications . J. Appl. Polym. Sci. , 2016 , 133 ( 18 ), 43361 . doi: 10.1002/app.43361 http://dx.doi.org/10.1002/app.43361
Ling L. ; Lai T. ; Chung P. T. ; Sabet S. ; Tran V. ; Malyala R. A novel 3D-printing model resin with low volumetric shrinkage and high accuracy . Polymers , 2025 , 17 ( 5 ), 610 . doi: 10.3390/polym17050610 http://dx.doi.org/10.3390/polym17050610
0
Views
98
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号