

浏览全部资源
扫码关注微信
1.中国科学院化学研究所 工程塑料重点实验室 北京 100190
2.中国科学院大学化学科学学院 北京 100049
Received:13 November 2025,
Accepted:11 December 2025,
Published Online:07 January 2026,
Published:20 January 2026
移动端阅览
尹春春, 宋广杰, 田卫国, 张晓程, 张金明, 张军. 离子液体在纤维素中的应用研究新进展. 高分子学报, 2026, 57(1), 23-46.
Yin, C. C.; Song, G. J.; Tian, W. G.; Zhang, X. C.; Zhang, J. M.; Zhang, J. New advances in the application of ionic liquids in cellulose. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 23-46.
尹春春, 宋广杰, 田卫国, 张晓程, 张金明, 张军. 离子液体在纤维素中的应用研究新进展. 高分子学报, 2026, 57(1), 23-46. DOI: 10.11777/j.issn1000-3304.2025.25300. CSTR: 32057.14.GFZXB.2025.7533.
Yin, C. C.; Song, G. J.; Tian, W. G.; Zhang, X. C.; Zhang, J. M.; Zhang, J. New advances in the application of ionic liquids in cellulose. Acta Polymerica Sinica (in Chinese), 2026, 57(1), 23-46. DOI: 10.11777/j.issn1000-3304.2025.25300. CSTR: 32057.14.GFZXB.2025.7533.
在国家双碳目标战略和高分子材料可持续发展的大背景下,以纤维素为代表的非粮生物质材料被认为是未来化学化工、生物基材料和生物质能源的主要原料,发展前景广阔. 由于自身聚集态结构的特点,天然纤维素不熔化、难溶解,传统的纤维素加工和衍生化工艺复杂、且污染严重,极大地限制了纤维素材料的广泛应用. 通过开发有效的纤维素溶剂,实现天然纤维素的高效转化、绿色加工和功能化,是纤维素高值化利用的重要途径. 纤维素新溶剂的开发一直是纤维素科学领域最活跃的研究内容之一,而离子液体溶剂作为一类新型、高效的纤维素溶剂体系的发现,为纤维素科学的基础研究,以及加工和衍生化反应研究提供一个高效、绿色、平台型新方法,基于离子液体的纤维素科学基础研究、纤维素加工方法以及纤维素衍生化反应等诸多领域取得重要研究进展,为纤维素这一“古老”的材料带来了勃勃生机. 近年来,离子液体在纤维素材料中的应用研究更加深入和广泛,本专论将介绍我们团队在过去几年间取得的相关研究成果,主要包括纤维素在离子液体及其共溶剂中的溶解和溶液行为、纤维素结晶、低成本纤维素原料的加工以及功能化纤维素材料创制等方面的研究进展.
Under the background of the national dual-carbon goal strategy and the sustainable development of polymers
non-food biomass materials represented by cellulose are considered the primary raw materials for the future chemical industry
bio-based materials
and biomass energy. Due to the characteristics of its supramolecular structure
natural cellulose does not melt and is difficult to dissolve. Traditional cellulose processing and derivatization processes are often complex and highly polluting
significantly limiting the widespread application of cellulose materials. Developing effective solvents for cellulose to achieve efficient conversion
green processing
and functionalization of natural cellulose is an important pathway for the high-value utilization of cellulose. The development of new cellulose solvents has always been one of the most active research topics in the field of cellulose science. The discovery of ionic liquids as a novel and efficient cellulose solvent system has provided a highly efficient
green
and platform-based new method for fundamental research on cellulose science
as well as for processing and derivatization. Significant progress has been made in various areas
bringing renewed vitality to this "ancient" material. In recent years
research on the application of ionic liquids in cellulose materials has become more in-depth and extensive. This feature article briefly summarizes the related research achievements of our group over the past few years
including progress in the dissolution and solution behavior of cellulose in ionic liquids and their co-solvents
cellulose crystallization
processing of low-cost cellulose raw materials
and the fabrication of new functional cellulose materials.
Huang C. L. ; Yu H. Y. ; Gao Y. J. ; Chen Y. ; Abdalkarim S. Y. H. ; Tam K. C. Recent advances in green and efficient cellulose utilization through structure deconstruction and regeneration . Adv. Funct. Mater. , 2025 , 35 ( 30 ), 2424591 . doi: 10.1002/adfm.202424591 http://dx.doi.org/10.1002/adfm.202424591
Sayyed A. J. ; Deshmukh N. A. ; Pinjari D. V. A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell . Cellulose , 2019 , 26 ( 5 ), 2913 - 2940 . doi: 10.1007/s10570-019-02318-y http://dx.doi.org/10.1007/s10570-019-02318-y
张金明 , 武进 , 余坚 , 张晓程 , 米勤勇 , 张军 . 以离子液体为介质的纤维素加工与功能化 . 高分子学报 , 2017 ( 7 ), 1058 - 1072 .
Weingärtner H. Understanding ionic liquids at the molecular level: facts, problems, and controversies . Angew. Chem. Int. Ed. , 2008 , 47 ( 4 ), 654 - 670 . doi: 10.1002/anie.200604951 http://dx.doi.org/10.1002/anie.200604951
Matuszek K. ; Piper S. L. ; Brzęczek-Szafran A. ; Roy B. ; Saher S. ; Pringle J. M. ; MacFarlane D. R. Unexpected energy applications of ionic liquids . Adv. Mater. , 2024 , 36 ( 23 ), 2313023 . doi: 10.1002/adma.202313023 http://dx.doi.org/10.1002/adma.202313023
Szabó L. ; Milotskyi R. ; Sharma G. ; Takahashi K. Cellulose processing in ionic liquids from a materials science perspective: turning a versatile biopolymer into the cornerstone of our sustainable future . Green Chem. , 2023 , 25 ( 14 ), 5338 - 5389 . doi: 10.1039/d2gc04730f http://dx.doi.org/10.1039/d2gc04730f
Zhang J. M. ; Wu J. ; Yu J. ; Zhang X. Y. ; He J. S. ; Zhang J. Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends . Mater. Chem. Front. , 2017 , 1 ( 7 ), 1273 - 1290 . doi: 10.1039/c6qm00348f http://dx.doi.org/10.1039/c6qm00348f
Zhang J. M. ; Luo N. ; Zhang X. Y. ; Xu L. L. ; Wu J. ; Yu J. ; He J. S. ; Zhang J. All-cellulose nanocomposites reinforced with in situ retained cellulose nanocrystals during selective dissolution of cellulose in an ionic liquid . ACS Sustainable Chem. Eng. , 2016 , 4 ( 8 ), 4417 - 4423 . doi: 10.1021/acssuschemeng.6b01034 http://dx.doi.org/10.1021/acssuschemeng.6b01034
Zhang J. M. ; Chen W. W. ; Feng Y. ; Wu J. ; Yu J. ; He J. S. ; Zhang J. Homogeneous esterification of cellulose in room temperature ionic liquids . Polym. Int. , 2015 , 64 ( 8 ), 963 - 970 . doi: 10.1002/pi.4883 http://dx.doi.org/10.1002/pi.4883
Li J. Y. ; Nawaz H. ; Wu J. ; Zhang J. M. ; Wan J. Q. ; Mi Q. Y. ; Yu J. ; Zhang J. All-cellulose composites based on the self-reinforced effect . Compos. Commun. , 2018 , 9 , 42 - 53 . doi: 10.1016/j.coco.2018.04.008 http://dx.doi.org/10.1016/j.coco.2018.04.008
Tian W. G. ; Gao X. X. ; Zhang J. M. ; Yu J. ; Zhang J. Cellulose nanosphere: preparation and applications of the novel nanocellulose . Carbohydr. Polym. , 2022 , 277 , 118863 . doi: 10.1016/j.carbpol.2021.118863 http://dx.doi.org/10.1016/j.carbpol.2021.118863
Jia R. N. ; Tian W. G. ; Bai H. T. ; Zhang J. M. ; Wang S. ; Zhang J. Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness . Nat. Commun. , 2019 , 10 ( 1 ), 795 . doi: 10.1038/s41467-019-08675-3 http://dx.doi.org/10.1038/s41467-019-08675-3
张金明 , 吕玉霞 , 罗楠 , 武进 , 余坚 , 何嘉松 , 张军 . 离子液体在纤维素化学中的应用研究新进展 . 高分子通报 , 2011 ( 10 ), 138 - 153 .
尹春春 , 许如梦 , 张金明 , 宋广杰 , 张军 . 可热塑加工的纤维素材料研究进展 . 高分子学报 , 2022 , 53 ( 9 ), 1072 - 1082 . doi: 10.11777/j.issn1000-3304.2022.22183 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22183
张金明 , 张军 . 基于纤维素的先进功能材料 . 高分子学报 , 2010 ( 12 ), 1376 - 1398 .
许如梦 , 张金明 , 张军 . 纤维素基刺激响应高分子材料研究进展 . 高分子通报 , 2018 ( 8 ), 119 - 124 .
Schulz L. ; Seger B. ; Burchard W. Structures of cellulose in solution . Macromol. Chem. Phys. , 2000 , 201 ( 15 ), 2008 - 2022 . doi: 10.1002/1521-3935(20001001)201:15<2008::aid-macp2008>3.0.co;2-h http://dx.doi.org/10.1002/1521-3935(20001001)201:15<2008::aid-macp2008>3.0.co;2-h
Song H. Z. ; Zhang J. ; Niu Y. H. ; Wang Z. G. Phase transition and rheological behaviors of concentrated cellulose/ionic liquid solutions . J. Phys. Chem. B , 2010 , 114 ( 18 ), 6006 - 6013 . doi: 10.1021/jp1013863 http://dx.doi.org/10.1021/jp1013863
Song H. Z. ; Niu Y. H. ; Wang Z. G. ; Zhang J. Liquid crystalline phase and Gel-Sol transitions for concentrated microcrystalline cellulose (MCC)/1-ethyl-3-methylimidazolium acetate (EMIMAc) solutions . Biomacromolecules , 2011 , 12 ( 4 ), 1087 - 1096 . doi: 10.1021/bm101426p http://dx.doi.org/10.1021/bm101426p
Rinaldi R. Instantaneous dissolution of cellulose in organic electrolyte solutions . Chem. Commun. , 2011 , 47 ( 1 ), 511 - 513 . doi: 10.1039/c0cc02421j http://dx.doi.org/10.1039/c0cc02421j
Xu A. R. ; Guo X. ; Xu R. Understanding the dissolution of cellulose in 1-butyl-3-methylimidazolium acetate+DMAc solvent . Int. J. Biol. Macromol. , 2015 , 81 , 1000 - 1004 . doi: 10.1016/j.ijbiomac.2015.09.058 http://dx.doi.org/10.1016/j.ijbiomac.2015.09.058
Xu, A. R; Cao, L. L.; Wang, B. J. Corrigendum to "facile cellulose dissolution without heating in [C4mim ] [CH 3 COO ] /DMF solvent. Carbohyd. Polym. , 2016 , 137 , 749 . doi: 10.1016/j.carbpol.2015.07.085 http://dx.doi.org/10.1016/j.carbpol.2015.07.085
Zhou Y. ; Zhang X. C. ; Yin D. X. ; Zhang J. M. ; Mi Q. Y. ; Lu H. C. ; Liang D. H. ; Zhang J. The solution state and dissolution process of cellulose in ionic-liquid-based solvents with different hydrogen-bonding basicity and microstructures . Green Chem. , 2022 , 24 ( 9 ), 3824 - 3833 . doi: 10.1039/d2gc00374k http://dx.doi.org/10.1039/d2gc00374k
Zhou Y. ; Zhang X. C. ; Zhang J. M. ; Cheng Y. H. ; Wu J. ; Yu J. ; Zhang J. Molecular weight characterization of cellulose using ionic liquids . Polym. Test. , 2021 , 93 , 106985 . doi: 10.1016/j.polymertesting.2020.106985 http://dx.doi.org/10.1016/j.polymertesting.2020.106985
Zhou Y. ; Zhang X. C. ; Cheng Y. H. ; Zhang J. M. ; Mi Q. Y. ; Yin C. C. ; Wu J. ; Zhang J. Super-rapid and highly-efficient esterification of cellulose to achieve an accurate chromatographic analysis of its molecular weight . Carbohydr. Polym. , 2022 , 286 , 119301 . doi: 10.1016/j.carbpol.2022.119301 http://dx.doi.org/10.1016/j.carbpol.2022.119301
Zhou Y. ; Cheng Y. H. ; Mi Q. Y. ; Zhang X. C. ; Zhang J. M. ; Zhang J. Confronting the challenge of cellulose molecular weight measurement: an accurate, rapid, and universal method with ionic liquid as an additive . Anal. Chem. , 2022 , 94 ( 13 ), 5432 - 5440 . doi: 10.1021/acs.analchem.2c00558 http://dx.doi.org/10.1021/acs.analchem.2c00558
Song G. J. ; Zhang J. ; Nishiyama Y. Twisted pseudo-tetragonal orthorhombic lamellar crystal in cellulose/ionic liquid spherulite . Cellulose , 2020 , 27 ( 10 ), 5449 - 5455 . doi: 10.1007/s10570-020-03214-6 http://dx.doi.org/10.1007/s10570-020-03214-6
Song G. J. ; Yu J. ; Ding M. C. ; Zhang J. A novel cellulose/ionic liquid complex crystal . Cryst. Growth Des. , 2018 , 18 ( 8 ), 4260 - 4264 . doi: 10.1021/acs.cgd.8b00754 http://dx.doi.org/10.1021/acs.cgd.8b00754
Song H. Z. ; Niu Y. H. ; Yu J. ; Zhang J. ; Wang Z. G. ; He J. S. Preparation and morphology of different types of cellulose spherulites from concentrated cellulose ionic liquid solutions . Soft Matter , 2013 , 9 ( 11 ), 3013 - 3020 . doi: 10.1039/c3sm27320b http://dx.doi.org/10.1039/c3sm27320b
Ding M. C. ; Yu J. ; He J. S. ; Zhang J. An unusual spherulite morphology induced by nano-fillers from a concentrated cellulose/ionic liquid solution . RSC Adv. , 2015 , 5 ( 55 ), 44648 - 44651 . doi: 10.1039/c5ra06740e http://dx.doi.org/10.1039/c5ra06740e
Wu Z. Y. ; Petzold A. ; Henze T. ; Thurn-Albrecht T. ; Lohwasser R. H. ; Sommer M. ; Thelakkat M. Temperature and molecular weight dependent hierarchical equilibrium structures in semiconducting poly(3-hexylthiophene) . Macromolecules , 2010 , 43 ( 10 ), 4646 - 4653 . doi: 10.1021/ma902566h http://dx.doi.org/10.1021/ma902566h
Diao H. L. ; Song G. J. ; Zhang J. Morphology and lamellar twisting of spherulites in cellulose-ionic liquid: effect of molecular weight and temperature . Macromolecules , 2024 , 57 ( 4 ), 1604 - 1611 . doi: 10.1021/acs.macromol.3c01502 http://dx.doi.org/10.1021/acs.macromol.3c01502
Diao H. L. ; Song G. J. ; Wu J. ; Zheng X. J. ; Zhang J. Stretch-induced crystallization of cellulose spun from ionic liquid solution . Biomacromolecules , 2022 , 23 ( 6 ), 2264 - 2271 . doi: 10.1021/acs.biomac.1c01553 http://dx.doi.org/10.1021/acs.biomac.1c01553
Fu D. B. ; Mazza G. ; Tamaki Y. Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues . J. Agric. Food Chem. , 2010 , 58 ( 5 ), 2915 - 2922 . doi: 10.1021/jf903616y http://dx.doi.org/10.1021/jf903616y
Zhang C. F. ; Shen X. J. ; Jin Y. C. ; Cheng J. L. ; Cai C. ; Wang F. Catalytic strategies and mechanism analysis orbiting the center of critical intermediates in lignin depolymerization . Chem. Rev. , 2023 , 123 ( 8 ), 4510 - 4601 . doi: 10.1021/acs.chemrev.2c00664 http://dx.doi.org/10.1021/acs.chemrev.2c00664
Pereira E. ; Pereira D. T. V. ; Rabelo S. C. ; Ceriani R. ; da Costa A. C. Green solvent pretreatments for lignocellulosic biorefineries: a review . J. Environ. Chem. Eng. , 2025 , 13 ( 1 ), 115303 . doi: 10.1016/j.jece.2024.115303 http://dx.doi.org/10.1016/j.jece.2024.115303
Liu Z. H. ; Liu H. ; Xu T. ; Zhao Z. M. ; Ragauskas A. J. ; Li B. Z. ; Yuan J. S. ; Yuan Y. J. Lignin valorization reshapes sustainable biomass refining . Renew. Sustainable Energy Rev. , 2025 , 211 , 115296 . doi: 10.1016/j.rser.2024.115296 http://dx.doi.org/10.1016/j.rser.2024.115296
Xia Z. H. ; Lu H. C. ; Xia G. M. ; Zhang J. M. ; Zhou Y. ; Mi Q. Y. ; Li J. Y. ; Zhang J. Tough and strong all-biomass plastics from agricultural and forest wastes via constructing an aggregate of hydrogen-bonding networks . ACS Sustainable Chem. Eng. , 2023 , 11 ( 24 ), 9153 - 9162 . doi: 10.1021/acssuschemeng.3c02038 http://dx.doi.org/10.1021/acssuschemeng.3c02038
Wu D. ; Wang M. ; Yu W. ; Wang G. G. ; Zhang J. H. A robust, biodegradable and recyclable all-cellulose ionogel from low-value wood . Chem. Eng. J. , 2024 , 486 , 150121 . doi: 10.1016/j.cej.2024.150121 http://dx.doi.org/10.1016/j.cej.2024.150121
Shuai J. B. ; Gao X. L. ; Zhao J. M. ; Ge W. J. ; Tian M. ; Lei Z. P. ; Wang X. H. Dissolution and regeneration of cellulose using superbase-based dicarboxylic ionic liquids with tailored amphiphilicity . Chem. Eng. J. , 2024 , 495 , 153280 . doi: 10.1016/j.cej.2024.153280 http://dx.doi.org/10.1016/j.cej.2024.153280
Zhang L. ; Zhan B. X. ; He Y. P. ; Deng Y. Q. ; Ji H. Y. ; Peng S. ; Yan L. F. Novel diacid-superbase ionic liquids for efficient dissolution of cellulose and simultaneous preparation of multifunctional cellulose materials . Green Chem. , 2024 , 26 ( 15 ), 8794 - 8807 . doi: 10.1039/d4gc02083a http://dx.doi.org/10.1039/d4gc02083a
Xia Z. H. ; You J. X. ; An H. J. ; Wang Y. R. ; Zhang J. M. ; Yin C. C. ; Cheng Y. H. ; Jin K. F. ; Zhang J. Eco-friendly fractionation of natural straws: sustainable ultralong room-temperature phosphorescence and super anti-ultraviolet materials . Sci. China Chem. , 2024 , 67 ( 7 ), 2373 - 2381 . doi: 10.1007/s11426-024-2016-8 http://dx.doi.org/10.1007/s11426-024-2016-8
Zhang J. M. ; Luo N. ; Wan J. Q. ; Xia G. M. ; Yu J. ; He J. S. ; Zhang J. Directly converting agricultural straw into all-biomass nanocomposite films reinforced with additional in situ -retained cellulose nanocrystals . ACS Sustainable Chem. Eng. , 2017 , 5 ( 6 ), 5127 - 5133 . doi: 10.1021/acssuschemeng.7b00488 http://dx.doi.org/10.1021/acssuschemeng.7b00488
Xia Z. H. ; Li J. Y. ; Lu H. C. ; Zhang J. M. ; Mi Q. Y. ; Wu J. ; Zheng X. J. ; Zhang J. Natural grass to all-biomass biodegradable tape and superior oil-water separation fabric . Resour. Conserv. Recycl. , 2022 , 182 , 106320 . doi: 10.1016/j.resconrec.2022.106320 http://dx.doi.org/10.1016/j.resconrec.2022.106320
Xia G. M. ; Wan J. Q. ; Zhang J. M. ; Zhang X. Y. ; Xu L. L. ; Wu J. ; He J. S. ; Zhang J. Cellulose-based films prepared directly fr om waste newspapers via an ionic liquid . Carbohydr. Polym. , 2016 , 151 , 223 - 229 . doi: 10.1016/j.carbpol.2016.05.080 http://dx.doi.org/10.1016/j.carbpol.2016.05.080
Xu Z. ; Zhou Q. W. ; Wang L. X. ; Xia G. M. ; Ji X. X. ; Zhang J. M. ; Zhang J. ; Nawaz H. ; Wang J. ; Peng J. F. Transparent cellulose-based films prepared from used disposable paper cups via an ionic liquid . Polymers , 2021 , 13 ( 23 ), 4209 . doi: 10.3390/polym13234209 http://dx.doi.org/10.3390/polym13234209
Xia G. M. ; Han W. J. ; Xu Z. ; Zhang J. M. ; Kong F. G. ; Zhang J. ; Zhang X. C. ; Jia F. W. Complete recycling and valorization of waste textiles for value-added transparent films via an ionic liquid . J. Environ. Chem. Eng. , 2021 , 9 ( 5 ), 106182 . doi: 10.1016/j.jece.2021.106182 http://dx.doi.org/10.1016/j.jece.2021.106182
张晓程 , 周彦 , 田卫国 , 乔昕 , 贾锋伟 , 许丽丽 , 张金明 , 张军 . 废旧棉/涤混纺织物的组分快速分离及其含量测定 . 纺织学报 , 2022 , 43 ( 7 ), 1 - 8 .
Cheng S. Y. ; Chen Z. L. ; Sheng D. H. ; Dong W. ; Cao R. ; Su Z. B. ; Wu M. D. ; Zhu X. F. ; Xie A. M. ; Mukherjee S. ; Li W. J. Sustainable electromagnetic interference shielding materials from cellulose-grafted n -type polymers . Nat. Commun. , 2025 , 16 , 8608 . doi: 10.1038/s41467-025-63665-y http://dx.doi.org/10.1038/s41467-025-63665-y
Sun X. ; Sun H. ; Zhu P. H. ; Wu Y. G. ; Palmer A. ; Jiang F. Transforming cellulose into functional three-dimensional structures . Adv. Funct. Mater. , 2025 , 35 ( 45 ), 2504778 . doi: 10.1002/adfm.202504778 http://dx.doi.org/10.1002/adfm.202504778
Jiang Y. ; Cheng L. Y. ; Yang M. M. ; Xiao L. ; Wang S. F. ; Liu X. Y. Ultrastrong, highly resilient, and humidity-sensitive wood nano-aerogel composed of resembling native-state fibrils . Adv. Funct. Mater. , 2025 , 35 ( 23 ), 2419155 . doi: 10.1002/adfm.202419155 http://dx.doi.org/10.1002/adfm.202419155
Tong Z. H. ; Liu S. ; Tang H. Y. ; Liu J. N. ; Bi W. J. ; Liu Y. ; Zeng S. Q. ; Xia Q. Q. ; Zhao D. W. ; Yu H. P. Super-robust cellulose rayon filaments engineered via molecular orientation-cross-linking assembly . Nano Lett. , 2025 , 25 ( 39 ), 14489 - 14496 . doi: 10.1021/acs.nanolett.5c04065 http://dx.doi.org/10.1021/acs.nanolett.5c04065
Huang Z. Y. ; Wang B. H. ; Shi Z. C. ; Qiao S. J. ; Tong A. X. ; Wang J. X. ; He J. ; He A. N. ; Chen X. C. ; Hu P. Y. ; Ke W. ; Yao N. ; Xu W. L. ; Chen F. X. Regenerated cellulose aerogel fibers with lightweight and exceptional mechanical performance for thermal insulation . Small , 2025 , 21 ( 25 ), 2501154 . doi: 10.1002/smll.202501154 http://dx.doi.org/10.1002/smll.202501154
Nan Q. Y. ; Yin C. C. ; Tian R. Y. ; Zhang J. ; Wang J. F. ; Yan C. H. ; Zhang J. M. ; Wu J. ; Zhang J. Superhygroscopic aerogels with hierarchical string-bag structure for effective humidity control . ACS Nano , 2025 , 19 ( 17 ), 16696 - 16705 . doi: 10.1021/acsnano.5c00979 http://dx.doi.org/10.1021/acsnano.5c00979
Hou Y. Z. ; Song G. J. ; Diao H. L. ; Li Y. H. ; Zhang J. Uniform and welded networks of silver nanowires surface-embedded on cellulose yarns with PEDOT: PSS passivation for sustainable E-textiles . Chem. Eng. J. , 2024 , 487 , 150469 . doi: 10.1016/j.cej.2024.150469 http://dx.doi.org/10.1016/j.cej.2024.150469
Xu Z. ; Fan J. L. ; Tian W. G. ; Ji X. ; Cui Y. Q. ; Nan Q. Y. ; Sun F. F. ; Zhang J. Cellulose-based pH-responsive Janus dressing with unidirectional moisture drainage for exudate management and diabetic wounds healing . Adv. Funct. Mater. , 2024 , 34 ( 3 ), 2307449 . doi: 10.1002/adfm.202307449 http://dx.doi.org/10.1002/adfm.202307449
Zhou G. W. ; Huang Z. X. ; Du R. T. ; Lei Z. P. ; Wang X. H. Reprocessable and recyclable cellulosic network polymers with intrinsic flame retardancy via dynamic covalent cross-linking . ACS Nano , 2025 , 19 ( 42 ), 37453 - 37462 . doi: 10.1021/acsnano.5c16164 http://dx.doi.org/10.1021/acsnano.5c16164
Chen Z. Y. ; Zhang J. M. ; Xiao P. ; Tian W. G. ; Zhang J. Novel thermoplastic cellulose esters containing bulky moieties and soft segments . ACS Sustainable Chem. Eng. , 2018 , 6 ( 4 ), 4931 - 4939 . doi: 10.1021/acssuschemeng.7b04466 http://dx.doi.org/10.1021/acssuschemeng.7b04466
Yin C. C. ; Zhang J. M. ; Chang L. M. ; Zhang M. ; Yang T. T. ; Zhang X. C. ; Zhang J. Regioselectively substituted cellulose mixed esters synthesized by two-steps route to understand chiral recognition mechanism and fabricate high-performance chiral stationary phases . Anal. Chim. Acta , 2019 , 1073 , 90 - 98 . doi: 10.1016/j.aca.2019.04.071 http://dx.doi.org/10.1016/j.aca.2019.04.071
Cheng Y. H. ; Zhang X. ; Yin C. C. ; Zhang J. M. ; Yu J. ; Zhang J. Immobilization of ionic liquids with a new cellulose ester containing imidazolium cation for high-performance CO 2 separation membranes . Macromol. Rapid Commun. , 2021 , 42 ( 3 ), 2000494 . doi: 10.1002/marc.202000494 http://dx.doi.org/10.1002/marc.202000494
Cheng Y. H. ; Wang Y. R. ; Zhang X. ; Zhang J. M. ; He Z. Y. ; Wang J. J. ; Zhang J. Spontaneous, scalable, and self-similar superhydrophobic coatings for all-weather deicing . Nano Res. , 2023 , 16 ( 5 ), 7171 - 7179 . doi: 10.1007/s12274-022-5320-4 http://dx.doi.org/10.1007/s12274-022-5320-4
Cheng Y. H. ; Yin C. C. ; Zhang J. M. ; Wang Y. R. ; Yan C. H. ; Zhang J. Sustainable and robust coating with superhydrophobic and oil-repellent performance for biodegradable catering packaging . Langmuir , 2025 , 41 ( 8 ), 5657 - 5663 . doi: 10.1021/acs.langmuir.5c00050 http://dx.doi.org/10.1021/acs.langmuir.5c00050
Wu J. ; Zhang J. ; Zhang H. ; He J. S. ; Ren Q. ; Guo M. L. Homogeneous acetylation of cellulose in a new ionic liquid . Biomacromolecules , 2004 , 5 ( 2 ), 266 - 268 . doi: 10.1021/bm034398d http://dx.doi.org/10.1021/bm034398d
Jia R. N. ; Tian W. G. ; Bai H. T. ; Zhang J. M. ; Wang S. ; Zhang J. Sunlight-driven wearable and robust antibacterial coatings with water-soluble cellulose-based photosensitizers . Adv. Healthc. Mater. , 2019 , 8 ( 5 ), 1801591 . doi: 10.1002/adhm.201801591 http://dx.doi.org/10.1002/adhm.201801591
Cheng Y. H. ; Zhang X. ; Zhang J. M. ; He Z. Y. ; Wang Y. R. ; Wang J. J. ; Zhang J. Hygroscopic hydrophobic coatings from cellulose: manipulation of the aggregation morphology of water . Chem. Eng. J. , 2022 , 441 , 136016 . doi: 10.1016/j.cej.2022.136016 http://dx.doi.org/10.1016/j.cej.2022.136016
Ji X. ; Tian W. G. ; Jin K. F. ; Wen C. J. ; Zhang Y. T. ; Yu J. ; Zhang J. Cellulose-based photothermal coating: a sustainable solution for seed protection and long-term grain storage . ACS Nano , 2023 , 17 ( 14 ), 13861 - 13871 . doi: 10.1021/acsnano.3c03660 http://dx.doi.org/10.1021/acsnano.3c03660
Wang Y. R. ; Cheng Y. H. ; Yin C. C. ; Zhang J. M. ; Zhang X. ; Zhang J. Seashell-inspired switchable waterborne coatings with complete biodegradability, intrinsic flame-retardance, and high transparency . ACS Nano , 2023 , 17 ( 13 ), 12433 - 12444 . doi: 10.1021/acsnano.3c01866 http://dx.doi.org/10.1021/acsnano.3c01866
Wang Y. R. ; Cheng Y. H. ; Yin C. C. ; Zhang J. M. ; You J. X. ; Wang J. Z. ; Wang J. F. ; Zhang J. Manipulating crystal growth and secondary phase PbI(2) to enable efficient and stable perovskite solar cells with natural additives . Nanomicro Lett. , 2024 , 16 ( 1 ), 183 . doi: 10.1007/s40820-024-01400-w http://dx.doi.org/10.1007/s40820-024-01400-w
Schlufter K. ; Schmauder H. P. ; Dorn S. ; Heinze T. Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1- N -butyl-3-methylimidazolium chloride . Macromol. Rapid Commun. , 2006 , 27 ( 19 ), 1670 - 1676 . doi: 10.1002/marc.200600463 http://dx.doi.org/10.1002/marc.200600463
Zhang J. M. ; Wu J. ; Cao Y. ; Sang S. M. ; Zhang J. ; He J. S. Synthesis of cellulose benzoates under homogeneous conditions in an ionic liquid . Cellulose , 2009 , 16 ( 2 ), 299 - 308 . doi: 10.1007/s10570-008-9260-2 http://dx.doi.org/10.1007/s10570-008-9260-2
Zhou Y. ; Zhang J. M. ; Cheng Y. H. ; Zhang X. ; Wu J. ; Zhang J. Click modification for polysaccharides via novel tunnel transmission phenomenon in ionic liquids . Research , 2022 , 2022 , 9853529 . doi: 10.34133/2022/9853529 http://dx.doi.org/10.34133/2022/9853529
Köhler S. ; Liebert T. ; Heinze T. ; Vollmer A. ; Mischnick P. ; Möllmann E. ; Becker W. Interactions of ionic liquids with polysaccharides 9. Hydroxyalkylation of cellulose without additional inorganic bases . Cellulose , 2010 , 17 ( 2 ), 437 - 448 . doi: 10.1007/s10570-009-9379-9 http://dx.doi.org/10.1007/s10570-009-9379-9
Abe M. ; Kuroda K. ; Ohno H. Maintenance-free cellulose solvents based on onium hydroxides . ACS Sustainable Chem. Eng. , 2015 , 3 ( 8 ), 1771 - 1776 . doi: 10.1021/acssuschemeng.5b00303 http://dx.doi.org/10.1021/acssuschemeng.5b00303
Abe M. ; Sugimura K. ; Nishiyama Y. ; Nishio Y. Rapid benzylation of cellulose in tetra-n-butylphosphonium hydroxide aqueous solution at room temperature . ACS Sustainable Chem. Eng. , 2017 , 5 ( 6 ), 4505 - 4510 . doi: 10.1021/acssuschemeng.7b00492 http://dx.doi.org/10.1021/acssuschemeng.7b00492
You J. X. ; Zhang X. ; Mi Q. Y. ; Zhang J. M. ; Wu J. ; Zhang J. Mild, rapid and efficient etherification of cellulose . Cellulose , 2022 , 29 ( 18 ), 9583 - 9596 . doi: 10.1007/s10570-022-04879-x http://dx.doi.org/10.1007/s10570-022-04879-x
Leppänen I. ; Vikman M. ; Harlin A. ; Orelma H. Enzymatic degradation and pilot-scale composting of cellulose-based films with different chemical structures . J. Polym. Environ. , 2020 , 28 ( 2 ), 458 - 470 . doi: 10.1007/s10924-019-01621-w http://dx.doi.org/10.1007/s10924-019-01621-w
Yin C. C. ; An H. J. ; Wu Q. L. ; Wang X. ; Wang J. F. ; Liao X. ; Zhang J. M. ; Zhang J. Bulky rigid substituent to enhance the chain mobility of cellulose for bio-degradable thermoplastics . Adv. Funct. Mater. , 2025 , doi: 10.1002/adfm.202510529. http://dx.doi.org/10.1002/adfm.202510529.
Xu R. M. ; Yin C. C. ; You J. X. ; Zhang J. M. ; Mi Q. Y. ; Wu J. ; Zhang J. Sustainable, thermoplastic and hydrophobic coating from natural cellulose and cinnamon to fabricate eco-friendly catering packaging . Green Energy Environ. , 2024 , 9 ( 5 ), 927 - 936 . doi: 10.1016/j.gee.2022.10.009 http://dx.doi.org/10.1016/j.gee.2022.10.009
Yin C. C. ; Wang Y. R. ; Wang J. F. ; You J. X. ; Wang X. ; Zhang J. ; Zhang J. M. Aqu-thermoplastics: recycling plastics with water . Adv. Funct. Mater. , 2025 , 35 ( 11 ), 2417119 . doi: 10.1002/adfm.202417119 http://dx.doi.org/10.1002/adfm.202417119
Nawaz H. ; Tian W. G. ; Zhang J. M. ; Jia R. N. ; Chen Z. Y. ; Zhang J. Cellulose-based sensor containing phenanthroline for the highly selective and rapid detection of Fe 2+ ions with naked eye and fluorescent dual modes . ACS Appl. Mater. Interfaces , 2018 , 10 ( 2 ), 2114 - 2121 . doi: 10.1021/acsami.7b17342 http://dx.doi.org/10.1021/acsami.7b17342
Tian W. G. ; Zhang J. M. ; Yu J. ; Wu J. ; Zhang J. ; He J. S. ; Wang F. S. Phototunable full-color emission of cellulose-based dynamic fluorescent materials . Adv. Funct. Mater. , 2018 , 28 ( 9 ), 1703548 . doi: 10.1002/adfm.201703548 http://dx.doi.org/10.1002/adfm.201703548
Nawaz H. ; Tian W. G. ; Zhang J. M. ; Jia R. N. ; Yang T. T. ; Yu J. ; Zhang J. Visual and precise detection of pH values under extreme acidic and strong basic environments by cellulose-based superior sensor . Anal. Chem. , 2019 , 91 ( 4 ), 3085 - 3092 . doi: 10.1021/acs.analchem.8b05554 http://dx.doi.org/10.1021/acs.analchem.8b05554
Liu Z. X. ; Tian W. G. ; Ji X. ; Wen C. J. ; Zhang J. Visualized discriminant analysis and recognition of multiple metal ions with a single cellulose-based fluorescent probe . ACS Sustainable Chem. Eng. , 2021 , 9 ( 28 ), 9376 - 9385 . doi: 10.1021/acssuschemeng.1c02508 http://dx.doi.org/10.1021/acssuschemeng.1c02508
Zhang X. ; Cheng Y. H. ; You J. X. ; Zhang J. M. ; Wang Y. R. ; Zhang J. Irreversible humidity-responsive phosphorescence materials from cellulose for advanced anti-counterfeiting and environmental monitoring . ACS Appl. Mater. Interfaces , 2022 , 14 ( 14 ), 16582 - 16591 . doi: 10.1021/acsami.2c00043 http://dx.doi.org/10.1021/acsami.2c00043
Zhang X. ; Yin C. C. ; You J. X. ; Li R. Q. ; Zhang J. M. ; Cheng Y. H. ; Wang Y. R. ; Zhang J. Cellulose-based ultralong room-temperature phosphorescence nanomaterials with tunable color and high quantum yield via nano-surface confining effect . Research , 2023 , 6 , 0029 . doi: 10.34133/research.0029 http://dx.doi.org/10.34133/research.0029
Zhang X. ; You J. X. ; Zhang J. M. ; Yin C. C. ; Wang Y. R. ; Li R. Q. ; Zhang J. Stimuli-responsive organic ultralong phosphorescent materials with complete biodegradability for sustainable information encryption . CCS Chem. , 2023 , 5 ( 9 ), 2140 - 2151 . doi: 10.31635/ccschem.022.202202388 http://dx.doi.org/10.31635/ccschem.022.202202388
Jin K. F. ; Yin C. C. ; You J. X. ; Diao H. L. ; Wang J. F. ; Zhu K. K. ; Zhang J. ; Zhang J. M. Large-scale and flexible circularly polarized room temperature phosphorescence with a high dissymmetry factor and chiral sensing . Innov. Mater. , 2024 , 2 ( 4 ), 100096 . doi: 10.59717/j.xinn-mater.2024.100096 http://dx.doi.org/10.59717/j.xinn-mater.2024.100096
Zhang X. ; Cheng Y. H. ; You J. X. ; Zhang J. M. ; Yin C. C. ; Zhang J. Ultralong phosphorescence cellulose with excellent anti-bacterial, water-resistant and ease-to-process performance . Nat. Commun. , 2022 , 13 ( 1 ), 1117 . doi: 10.1038/s41467-022-28759-x http://dx.doi.org/10.1038/s41467-022-28759-x
You J. X. ; Zhang X. ; Nan Q. Y. ; Jin K. F. ; Zhang J. M. ; Wang Y. R. ; Yin C. C. ; Yang Z. Y. ; Zhang J. Aggregation-regulated room-temperature phosphorescence materials with multi-mode emission, adjustable excitation-dependence and visible-light excitation . Nat. Commun. , 2023 , 14 , 4163 . doi: 10.1038/s41467-023-39767-w http://dx.doi.org/10.1038/s41467-023-39767-w
Zhan X. Q. ; Xu F. F. ; Zhou Z. H. ; Yan Y. L. ; Yao J. N. ; Zhao Y. S. 3 D laser displays based on circularly polarized lasing from cholesteric liquid crystal arrays . Adv. Mater. , 2021 , 33 ( 37 ), 2104418 . doi: 10.1002/adma.202104418 http://dx.doi.org/10.1002/adma.202104418
Yang Y. ; da Costa R. C. ; Fuchter M. J. ; Campbell A. J. Circularly polarized light detection by a chiral organic semiconductor transistor . Nat. Photonics , 2013 , 7 ( 8 ), 634 - 638 . doi: 10.1038/nphoton.2013.176 http://dx.doi.org/10.1038/nphoton.2013.176
Zhang D. W. ; Li M. ; Chen C. F. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes . Chem. Soc. Rev. , 2020 , 49 ( 5 ), 1331 - 1343 . doi: 10.1039/c9cs00680j http://dx.doi.org/10.1039/c9cs00680j
Zhou Y. D. ; Lu S. ; Zhi J. H. ; Jiang R. H. ; Chen J. H. ; Zhong H. B. ; Shi H. F. ; Ma X. ; An Z. F. Microscopic afterglow bioimaging by ultralong organic phosphorescent nanoparticles in living cells and zebrafish . Anal. Chem. , 2021 , 93 ( 16 ), 6516 - 6522 . doi: 10.1021/acs.analchem.1c00423 http://dx.doi.org/10.1021/acs.analchem.1c00423
Sang Y. T. ; Han J. L. ; Zhao T. H. ; Duan P. F. ; Liu M. H. Circularly polarized luminescence in nanoassemblies: generation, amplification, and application . Adv. Mater. , 2020 , 32 ( 41 ), 1900110 . doi: 10.1002/adma.201900110 http://dx.doi.org/10.1002/adma.201900110
Stachelek P. ; MacKenzie L. ; Parker D. ; Pal R. Circularly polarised luminescence laser scanning confocal microscopy to study live cell chiral molecular interactions . Nat. Commun. , 2022 , 13 ( 1 ), 553 . doi: 10.1038/s41467-022-28220-z http://dx.doi.org/10.1038/s41467-022-28220-z
Han J. M. ; Guo S. ; Lu H. ; Liu S. J. ; Zhao Q. ; Huang W. Recent progress on circularly polarized luminescent materials for organic optoelectronic devices . Adv. Opt. Mater. , 2018 , 6 ( 17 ), 1800538 . doi: 10.1002/adom.201800538 http://dx.doi.org/10.1002/adom.201800538
Yang Y. Y. ; Li N. Q. ; Miao J. S. ; Cao X. S. ; Ying A. ; Pan K. ; Lv X. L. ; Ni F. ; Huang Z. Y. ; Gong S. L. ; Yang C. L. Chiral multi-resonance TADF emitters exhibiting narrowband circularly polarized electroluminescence with an EQE of 37.2 % . Angew. Chem. Int. Ed. , 2022 , 61 ( 30 ), e 202202227 . doi: 10.1002/anie.202202227 http://dx.doi.org/10.1002/anie.202202227
Zhang F. S. ; Li Q. Y. ; Wang C. L. ; Wang D. D. ; Song M. Y. ; Li Z. ; Xue X. Y. ; Zhang G. ; Qing G. Y. Multimodal, convertible, and chiral optical films for anti-counterfeiting labels . Adv. Funct. Mater. , 2022 , 32 ( 33 ), 2204487 . doi: 10.1002/adfm.202204487 http://dx.doi.org/10.1002/adfm.202204487
Han D. X. ; Yang X. F. ; Han J. L. ; Zhou J. ; Jiao T. F. ; Duan P. F. Sequentially amplified circularly polarized ultraviolet luminescence for enantioselective photopolymerization . Nat. Commun. , 2020 , 11 ( 1 ), 5659 . doi: 10.1038/s41467-020-19479-1 http://dx.doi.org/10.1038/s41467-020-19479-1
He C. L. ; Yang G. ; Kuai Y. ; Shan S. Z. ; Yang L. ; Hu J. G. ; Zhang D. G. ; Zhang Q. J. ; Zou G. Dissymmetry enhancement in enantioselective synthesis of helical polydiacetylene by application of superchiral light . Nat. Commun. , 2018 , 9 ( 1 ), 5117 . doi: 10.1038/s41467-018-07533-y http://dx.doi.org/10.1038/s41467-018-07533-y
You J. X. ; Yin C. C. ; Wang S. H. ; Wang X. ; Jin K. F. ; Wang Y. R. ; Wang J. F. ; Liu L. ; Zhang J. ; Zhang J. M. Responsive circularly polarized ultralong room temperature phosphorescence materials with easy-to-scale and chiral-sensing performance . Nat. Commun. , 2024 , 15 , 7149 . doi: 10.1038/s41467-024-51203-1 http://dx.doi.org/10.1038/s41467-024-51203-1
0
Views
259
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution

京公网安备11010802046899号