H NOESY谱证明了主客体作用的发生. 该前药胶束具有pH值响应的药物释放行为,在细胞内涵体/溶酶体酸性环境下药物释放速率显著加快. 用荧光显微镜和流式细胞仪对此聚合物前药胶束的细胞内吞行为进行了研究. 在乳糖酸受体介导作用下,聚合物前药胶束能在肿瘤细胞内有效富集,并同时观察到阿霉素和异硫氰酸荧光素的荧光,用以跟踪载体在细胞内的位置. MTT的结果进一步表明,该前药胶束能有效地抑制癌细胞的增殖.
Abstract
Unlike the crude study conducted at the beginning of nanomedicine
researchers have devoted more efforts to developing nanosystems with elaborated structures and multifunctions owing to the fact that the tumor microenvironment is complicated. However
it is still a great challenge to prepare these nanoplatforms for drug delivery. In this study
multifunctional prodrug nanocarriers were fabricated by the modularized host-guest self-assembly between cholesterol and
β
-cyclodextrin. The targeted ligand lactobionic acid (LBA)
and chemtherapeutic drug doxorubicin (DOX) were integrated into the multifunctional supramolecualr drug nanocarriers. The host-guest interaction between Chol-PEG and
β
-CD-hydrazone-DOX was confirmed by 2D
1
H NOESY spectrum. The modularized functional building blocks could self-assemble into micelles with a diameter of 20 nm. The supramolecular nanocarriers showed pH-sensitive drug release behavior. The release of DOX can be greatly accelerated in acidic endo/lysosomal pH. The internalization of the supramolecular drug nanocarriers by HepG2 cells was studied by fluorescence microscopy and flow cytometry. The nanocarriers can be well taken up by cancer cells. Due to the targeting ability of LBA
the internalization of the nanocarriers can be greatly inhibited if the cells are pre-treated by free LBA. At the same time
the fluorescence of FITC can be clearly observed intracellularly
which can be used to track the sub-cellular location of the drug nanocarriers. Finally
the cytotoxicity of the drug nanocarriers was investigaed by MTT assay. With the HepG2 cells pre-treated with free LBA
the cytotoxicity of the drug nanocarriers was significantly reduced
most probably owing to the unsatisfactory cell uptake. The concentration-dependent cytotoxicity toward HepG2 cells was also observed. Therefore
the integration of target ligand and imaging ligand have endowed the nanocarriers with targeted theranostic property. More importantly
since the modularized host-guest self-assembly is dynamically tunable
the percentage of functional ligands could be easily optimized to achieve a better outcome. Such multifunctional prodrug nanocarriers fabricated by modularized host-guest self-assembly may have great potential in drug delivery.
Hare J I, Lammers T, Ashford M B, Puri S, Storm G, Barry S T . Adv Drug Deliv Rev , . 2017 . 108 25 - 38 . DOI:10.1016/j.addr.2016.04.025http://doi.org/10.1016/j.addr.2016.04.025 .
Allen T M, Cullis P R . Adv Drug Deliv Rev , . 2013 . 65 ( 1 ): 36 - 48 . DOI:10.1016/j.addr.2012.09.037http://doi.org/10.1016/j.addr.2012.09.037 .
Peer D, Karp J M, Hong S, FaroKHzad O C, Margalit R, Langer R . Nat Nanotechnol , . 2007 . 2 ( 12 ): 751 - 760 . DOI:10.1038/nnano.2007.387http://doi.org/10.1038/nnano.2007.387 .
Duncan R . Nat Rev Cancer , . 2006 . 6 ( 9 ): 688 - 701 . DOI:10.1038/nrc1958http://doi.org/10.1038/nrc1958 .
Xie L S, Wang G H, Zhou H, Zhang F, Guo Z D, Liu C, Zhang X Z, Zhu L . Biomaterials , . 2016 . 103 219 - 228 . DOI:10.1016/j.biomaterials.2016.06.058http://doi.org/10.1016/j.biomaterials.2016.06.058 .
Han H J, Valdeperez D, Jin Q, Yang B, Li Z H, Wu Y L, Pelaz B, Parak W J, Ji J . ACS Nano , . 2017 . 11 ( 2 ): 1281 - 1291 . DOI:10.1021/acsnano.6b05541http://doi.org/10.1021/acsnano.6b05541 .
Liong M, Lu J, Kovochich M, Xia T, Ruehm S G, Nel A E, Tamanoi F, Zink J I . ACS Nano , . 2008 . 2 ( 5 ): 889 - 896 . DOI:10.1021/nn800072thttp://doi.org/10.1021/nn800072t .
Zhou Z J, Wang Y T, Yan Y, Zhang Q, Cheng Y Y . ACS Nano , . 2016 . 10 ( 4 ): 4863 - 4872 . DOI:10.1021/acsnano.6b02058http://doi.org/10.1021/acsnano.6b02058 .
Chen W H, Lei Q, Luo G F, Jia H Z, Hong S, Liu Y X, Cheng Y J, Zhang X Z . ACS Appl Mater Interfaces , . 2015 . 7 ( 31 ): 17171 - 17180 . DOI:10.1021/acsami.5b04031http://doi.org/10.1021/acsami.5b04031 .
Fu P P, Xia Q S, Hwang H M, Ray P C, Yu H T . J Food Drug Anal , . 2014 . 22 ( 1 ): 64 - 75 . DOI:10.1016/j.jfda.2014.01.005http://doi.org/10.1016/j.jfda.2014.01.005 .
Wang S Y, Kim G, Lee Y E K, Hah H J, Ethirajan M, Pandey R K, Kopelman R . ACS Nano , . 2012 . 6 ( 8 ): 6843 - 6851 . DOI:10.1021/nn301633mhttp://doi.org/10.1021/nn301633m .
Chen Y J, Li Z H, Wang H B, Wang Y, Han H J, Jin Q, Ji J . ACS Appl Mater Interfaces , . 2016 . 8 ( 11 ): 6852 - 6858 . DOI:10.1021/acsami.6b00251http://doi.org/10.1021/acsami.6b00251 .
Han H J, Wang H B, Chen Y J, Li Z H, Wang Y, Jin Q, Ji J . Nanoscale , . 2016 . 8 ( 1 ): 283 - 291 . DOI:10.1039/C5NR06734Khttp://doi.org/10.1039/C5NR06734K .
Yang B, Dong X, Lei Q, Zhuo R X, Feng J, Zhang X Z . ACS Appl Mater Interfaces , . 2015 . 7 ( 39 ): 22084 - 22094 . DOI:10.1021/acsami.5b07549http://doi.org/10.1021/acsami.5b07549 .
Liu J, Tan C S Y, Yu Z Y, Lan Y, Abell C, Scherman O A . Adv Mater , . 2017 . 29 ( 10 ): 1604951 DOI:10.1002/adma.201604951http://doi.org/10.1002/adma.201604951 .
Liu J, Lan Y, Yu Z Y, Tan C S Y, Parker R M, Abell C, Scherman O A . Acc Chem Res , . 2017 . 50 ( 2 ): 208 - 217 . DOI:10.1021/acs.accounts.6b00429http://doi.org/10.1021/acs.accounts.6b00429 .
Zhou J, Yu G C, Huang F H . Chem Soc Rev , . 2017 . 46 ( 22 ): 7021 - 7053 . DOI:10.1039/C6CS00898Dhttp://doi.org/10.1039/C6CS00898D .
Yu G C, Jie K C, Huang F H . Chem Rev , . 2015 . 115 ( 15 ): 7240 - 7303 . DOI:10.1021/cr5005315http://doi.org/10.1021/cr5005315 .
Liu G Y, Jin Q A, Liu X S, Lv L P, Chen C J, Ji J A . Soft Matter , . 2011 . 7 ( 2 ): 662 - 669 . DOI:10.1039/C0SM00708Khttp://doi.org/10.1039/C0SM00708K .
Wang Y, Wang H B, Chen Y J, Liu X S, Jin Q, Ji J . Chem Commun , . 2013 . 49 ( 64 ): 7123 - 7125 . DOI:10.1039/c3cc43687jhttp://doi.org/10.1039/c3cc43687j .
Wang Y, Wang H B, Chen Y J, Liu X S, Jin Q, Ji J . Colloid Surf B , . 2014 . 121 189 - 195 . DOI:10.1016/j.colsurfb.2014.06.024http://doi.org/10.1016/j.colsurfb.2014.06.024 .
Wang Y, Wang H B, Liu G Y, Liu X S, Jin Q, Ji J . Macromol Biosci , . 2013 . 13 ( 8 ): 1084 - 1091 . DOI:10.1002/mabi.201300052http://doi.org/10.1002/mabi.201300052 .
van de Manakker F, van der Pot M, Vermonden T, van Nostrum C F, Hennink W E . Macromolecules , . 2008 . 41 ( 5 ): 1766 - 1773 . DOI:10.1021/ma702607rhttp://doi.org/10.1021/ma702607r .
Jiang H M, Zhang S F, Sui Q . Asian J Chem , . 2011 . 23 ( 9 ): 3783 - 3786.
Studies on Stimulus Responsive Peptides and Their Applications in Tumor Diagnosis and Treatment
Synthesis and Self-assembly of Responsive Branched Polymers and Their Biomedical Applications
FLUORESCENCE ENHANCEMENT OF GFP CHROMOPHORE THROUGH POLYMERIC SELF-ASSEMBLY
SYNTHESIS AND OPTICAL PROPERTIES OF GFP-MIMIC FLUORESCENT POLYMER
SELF-ASSEMBLY BEHAVIOR OF SUPRAMOLECULAR DIBLOCK COPOLYMER/HOMOPOLYMER MIXTURES WITH NON-COVALENT BONDING INTERACTIONS IN SELECTIVE SOLVENTS
Related Author
No data
Related Institution
Department of Chemistry & Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University
Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240
Instrumental Analysis Center, Shanghai Jiao Tong University