浏览全部资源
扫码关注微信
1.北京分子科学国家研究中心 生物有机分子工程教育部重点实验室 高分子化学与物理教育部重点实验室 软物质科学与工程中心 北京大学化学与分子工程学院 北京 100871
2.北京大学工学院材料科学与工程系 北京 100871
Published:2019-1,
Published Online:13 December 2018,
Received:17 October 2018,
Revised:13 November 2018,
扫 描 看 全 文
Qi-yi Li, Ting Lei, Ze-fan Yao, Jie-yu Wang, Jian Pei. Multi-level Self-assembly of Conjugated Polymers. [J]. Acta Polymerica Sinica 50(1):1-12(2019)
Qi-yi Li, Ting Lei, Ze-fan Yao, Jie-yu Wang, Jian Pei. Multi-level Self-assembly of Conjugated Polymers. [J]. Acta Polymerica Sinica 50(1):1-12(2019) DOI: 10.11777/j.issn1000-3304.2018.18223.
共轭高分子材料具有质轻、柔软、成本低、性能易于调控且可溶液加工等特点,在有机电致发光二极管、有机光伏、场效应晶体管与传感器件等领域有广泛的应用前景. 共轭高分子体系中的多种弱相互作用使其可以形成复杂的多级组装结构,因此深入研究共轭高分子多级组装对于明确高分子功能材料构效关系具有重要意义. 本文立足于系统对比共轭高分子多级组装与蛋白质多级组装的相似性,首次划分了共轭高分子多级组装中存在的四级结构:一级结构为通过共价作用形成的一维聚合物链结构,二级结构为通过分子间相互作用如
π
-
π
堆积(
π
-
π
stacking)、层状堆叠(lamellar packing)和链缠结等形成的一条或多条聚合物链组装结构,三级结构为不同相行为对应的聚集结构,例如结晶、无定形区域(crystalline and amorphous region)和过渡区域等,四级结构为多组分相互作用及相分离的材料体系. 多级结构相互关联,共同决定了共轭高分子材料的光、电、热等物理性质. 本文总结了近年来共轭高分子多级组装的相关研究工作,为观察和理解并指导高分子多级组装、建立完整的“构效”关系、优化器件性能提供了新视角.
Conjugated polymer materials have properties of light-weight
flexibility
good solution processability
performance tunability and low manufacturing cost. Therefore they hold great promise in various applications like light-emitting diodes
photovoltaics
field effect transistors and sensors. Due to the weak intermolecular interactions between conjugated polymers
subtle chemical structure modification and fabrication process alteration will cause variation of molecule assembly behaviours at a broad range of length scale and change of device performance. Thus
complex and diverse multi-level self-assembly structures of conjugated polymers can be formed. This provides rational molecular design and future industrial application with theoretical basis and applicable design strategies. This also sheds light on understanding the " structure-function relationships” of conjugated polymer materials. For the first time
based on systematic comparison of similarity between multi-level self-assembly behaviours of conjugated polymers and proteins
this review proposes that the assemblies used in optoelectronic devices usually have quaternary structures as in proteins: the primary structure is the one-dimensional polymer chain connected by covalent bonding; the secondary structure is multiple polymer chain aggregates forming through interchain interactions like lamellar packing
π
-
π
stacking and chain entanglement; the tertiary structure is the phase behaviour as crystalline and amorphous region with domain size and grain boundary; the quaternary structure is the phase segregation in multi-component mixture through interaction between different component and phase interfacial properties. Multi-level self-assembly behaviours are in concert with each other to functionalize conjugated polymer materials by light
electric
magnet and heat performances. This review summarizes recent progresses on studies of conjugated polymer multi-level self-assembly process
which provides us with a new prospect of better observing
understanding and guiding the conjugated polymer multi-level self-assembly process. And thereby the substantial relationship between chemical structure
fabrication processing
assembly behaviour and macroscopic physical process is established
and the optoelectronic properties of polymer materials is furthermore optimized.
共轭高分子超分子化学溶液自组装构效关系
Conjugated polymerSupramolecular chemistrySolution-state self-assemblyStructure-function relationship
Sanger F . Adv Protein Chem , 1952 . 7 1 - 67 . DOI:10.1016/S0065-3233(08)60017-0http://doi.org/10.1016/S0065-3233(08)60017-0 .
Schellman J A, Schellman C G . Protein Science: A Publication of the Protein Society , 1997 . 6 ( 5 ): 1092 - 1100 . DOI:10.1002/pro.v6:5http://doi.org/10.1002/pro.v6:5 .
Braden C, Tooze J. Introduction to Protein Structure. New York: Garland, 1999
Grozema F C, van Duijnen P T, Berlin Y A, Ratner M A, Siebbeles L D . J Phys Chem B , 2002 . 106 ( 32 ): 7791 - 7795 . DOI:10.1021/jp021114vhttp://doi.org/10.1021/jp021114v .
Prins P, Grozema F, Schins J, Patil S, Scherf U, Siebbeles L . Phys Rev Lett , 2006 . 96 ( 14 ): 146601 DOI:10.1103/PhysRevLett.96.146601http://doi.org/10.1103/PhysRevLett.96.146601 .
Oberhofer H, Reuter K, Blumberger J . Chem Rev , 2017 . 117 ( 15 ): 10319 - 10357.
Lei T, Cao Y, Zhou X, Peng Y, Bian J, Pei J . Chem Mater , 2012 . 24 ( 10 ): 1762 - 1770 . DOI:10.1021/cm300117xhttp://doi.org/10.1021/cm300117x .
Lei T, Xia X, Wang J Y, Liu C J, Pei J . J Am Chem Soc , 2014 . 136 ( 5 ): 2135 - 2141 . DOI:10.1021/ja412533dhttp://doi.org/10.1021/ja412533d .
Zaumseil J, Sirringhaus H . Chem Rev , 2007 . 107 ( 4 ): 1296 - 1323 . DOI:10.1021/cr0501543http://doi.org/10.1021/cr0501543 .
Usta H, Newman C, Chen Z H, Facchetti A . Adv Mater , 2012 . 24 ( 27 ): 3678 - 3684 . DOI:10.1002/adma.v24.27http://doi.org/10.1002/adma.v24.27 .
Gao X K, Hu Y B . J Mater Chem C , 2014 . 2 ( 17 ): 3099 - 3117 . DOI:10.1039/C3TC32046Dhttp://doi.org/10.1039/C3TC32046D .
Newman C R, Frisbie C D, da Silva D A, Bredas J L, Ewbank P C, Mann K R . Chem Mater , 2004 . 16 ( 23 ): 4436 - 445 . DOI:10.1021/cm049391xhttp://doi.org/10.1021/cm049391x .
Phan H, Ford M J, Lill A T, Wang M, Bazan G C, Nguyen T Q . Adv Funct Mater , 2017 . 27 ( 38 ): 1701358 .
Ford M J, Wang M, Phan H, Nguyen T Q, Bazan G C . Adv Funct Mater , 2016 . 26 ( 25 ): 4472 - 4480 . DOI:10.1002/adfm.201601294http://doi.org/10.1002/adfm.201601294 .
Tsao H N, Cho D M, Park I, Hansen M R, Mavrinskiy A, Yoon D Y, Graf R, Pisula W, Spiess H W, Mullen K . J Am Chem Soc , 2011 . 133 ( 8 ): 2605 - 2612 . DOI:10.1021/ja108861qhttp://doi.org/10.1021/ja108861q .
Coropceanu V, Cornil J, da Silva Filho D A, Olivier Y, Silbey R, Brédas J L . Chem Rev , 2007 . 107 ( 4 ): 926 - 952 . DOI:10.1021/cr050140xhttp://doi.org/10.1021/cr050140x .
Olivier Y, Niedzialek D, Lemaur V, Pisula W, Mullen K, Koldemir U, Reynolds J R, Lazzaroni R, Cornil J, Beljonne D . Adv Mater , 2014 . 26 ( 14 ): 2119 - 2136 . DOI:10.1002/adma.v26.14http://doi.org/10.1002/adma.v26.14 .
Niedzialek D, Lemaur V, Dudenko D, Shu J, Hansen M R, Andreasen J W, Pisula W, Mullen K, Cornil J, Beljonne D . Adv Mater , 2013 . 25 ( 13 ): 1939 - 1947 . DOI:10.1002/adma.v25.13http://doi.org/10.1002/adma.v25.13 .
Savage R C, Orgiu E, Mativetsky J M, Pisula W, Schnitzler T, Eversloh C L, Li C, Mullen K, Samori P . Nanoscale , 2012 . 4 ( 7 ): 2387 - 2393 . DOI:10.1039/c2nr30088ehttp://doi.org/10.1039/c2nr30088e .
Samori P, Fechtenkotter A, Jackel F, Bohme T, MüllenK, Rabe J P . J Am Chem Soc , 2001 . 123 ( 46 ): 11462 - 11467 . DOI:10.1021/ja0111380http://doi.org/10.1021/ja0111380 .
Balakrishnan K, Datar A, Naddo T, Huang J L, Oitker R, Yen M, Zhao J C, Zang L . J Am Chem Soc , 2006 . 128 ( 22 ): 7390 - 7398 . DOI:10.1021/ja061810zhttp://doi.org/10.1021/ja061810z .
Lei T, Dou J H, Pei J . Adv Mater , 2012 . 24 ( 48 ): 6457 - 6461 . DOI:10.1002/adma.v24.48http://doi.org/10.1002/adma.v24.48 .
Brinkmann M, Rannou P . Adv Funct Mater , 2007 . 17 ( 1 ): 101 - 108 . DOI:10.1002/(ISSN)1616-3028http://doi.org/10.1002/(ISSN)1616-3028 .
DeLongchamp D M, Kline R J, Jung Y, Germack D S, Lin E K, Moad A J, Richter L J, Toney M F, Heeney M, McCulloch I . ACS Nano , 2009 . 3 ( 4 ): 780 - 787 . DOI:10.1021/nn800574fhttp://doi.org/10.1021/nn800574f .
Whitehead K S, Grell M, Bradley D D C, InbasekaranM, Woo E P . Synth Met , 2000 . 111 181 - 185.
Banach M J, Friend R H, Sirringhaus H . Macromolecules , 2004 . 37 ( 16 ): 6079 - 6085 . DOI:10.1021/ma035775hhttp://doi.org/10.1021/ma035775h .
Tseng H R, Phan H, Luo C, Wang M, Perez L A, Patel S N, Ying L, Kramer E J, Nguyen T Q, Bazan G C, Heeger A J . Adv Mater , 2014 . 26 ( 19 ): 2993 - 2998 . DOI:10.1002/adma.201305084http://doi.org/10.1002/adma.201305084 .
Tseng H R, Ying L, Hsu B B Y, Perez L A, Takacs C J, Bazan G C, Heeger A J . Nano Lett , 2012 . 12 ( 12 ): 6353 - 6357 . DOI:10.1021/nl303612zhttp://doi.org/10.1021/nl303612z .
Li M M, An C B, Marszalek T, Baumgarten M, Yan H, Mullen K,Pisula W . Adv Mater , 2016 . 28 ( 42 ): 9430 - 9438 . DOI:10.1002/adma.201602660http://doi.org/10.1002/adma.201602660 .
Rivnay J, Toney M F, Zheng Y, Kauvar I V, Chen Z H, Wagner V, Facchetti A, Salleo A . Adv Mater , 2010 . 22 ( 39 ): 4359 - 4363 . DOI:10.1002/adma.v22:39http://doi.org/10.1002/adma.v22:39 .
Zhang X R, Richter L J, DeLongchamp D M, Kline R J, Hammond M R, McCulloch I, Heeney M, Ashraf R S, Smith J N, Anthopoulos T D, Schroeder B, Geerts Y H, Fischer D A, Toney M F . J Am Chem Soc , 2011 . 133 ( 38 ): 15073 - 15084 . DOI:10.1021/ja204515shttp://doi.org/10.1021/ja204515s .
Botiz I, Stingelin N . Materials , 2014 . 7 ( 3 ): 2273 - 2300 . DOI:10.3390/ma7032273http://doi.org/10.3390/ma7032273 .
Chen L, Zhao K F, Cao X X, Liu J G, Yu X H, Han Y C . Polymer (United Kingdom) , 2018 . 149 23 - 29.
Zheng Y Q, Yao Z F, Lei T, Dou J H, Yang C Y, Zou L, Meng X Y, Ma W,Wang J Y, Pei J . Adv Mater , 2017 . 29 ( 42 ): 1701072 DOI:10.1002/adma.201701072http://doi.org/10.1002/adma.201701072 .
Wei S Y, Tian F S, Ge F, Wang X H, Zhang G B, Lu H B, Yin J, Wu Z, Qiu L . ACS Appl Mater Interfaces , 2018 . 10 ( 26 ): 22504 - 22512 . DOI:10.1021/acsami.8b06458http://doi.org/10.1021/acsami.8b06458 .
Noriega R, Rivnay J, Vandewal K, Koch F P V, Stingelin N, Smith P, Toney M F, Salleo A . Nat Mater , 2013 . 12 ( 11 ): 1038 - 1044 . DOI:10.1038/nmat3722http://doi.org/10.1038/nmat3722 .
Zhang X R, Bronstein H, Kronemeijer A J, Smith J, Kim Y, Kline R J, Richter L J, Anthopoulos T D, Sirringhaus H, Song K, Heeney M, Zhang W M, McCulloch I, DeLongchamp D M . Nat Commun , 2013 . ( 4 ): 2238 .
Venkateshvaran D, Nikolka M, Sadhanala A, Lemaur V, Zelazny M, Kepa M, Hurhangee M, Kronemeijer A J, Pecunia V, Nasrallah I, Romanov I, Broch K, McCulloch I, Emin D, Olivier Y, Cornil J, Beljonne D, Sirringhaus H . Nature , 2014 . 515 ( 7527 ): 384 - 388 . DOI:10.1038/nature13854http://doi.org/10.1038/nature13854 .
Lei Y L, Deng P, Lin M, Zheng X L, Zhu F R, Ong Beng S . Adv Mater , 2016 . 28 ( 31 ): 6687 - 6694 . DOI:10.1002/adma.201600580http://doi.org/10.1002/adma.201600580 .
Mohammadi E, Zhao C K, Meng Y F, Qu G, Zhang F J, Zhao X K, Mei J G, Zuo J M, Shukla D, Diao Y . Nat Commun , 2017 . ( 8 ): 16070 .
Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J . Science , 1995 . 270 ( 5243 ): 1789 - 1791 . DOI:10.1126/science.270.5243.1789http://doi.org/10.1126/science.270.5243.1789 .
Li Y F . Acc Chem Res , 2012 . 45 ( 5 ): 723 - 733 . DOI:10.1021/ar2002446http://doi.org/10.1021/ar2002446 .
Li G, Zhu R, Yang Y . Nat Photon , 2012 . 6 ( 3 ): 153 - 161 . DOI:10.1038/nphoton.2012.11http://doi.org/10.1038/nphoton.2012.11 .
Li Z K, Jiang K, Yang G F, Lai J Y L, Ma T X, Zhao J B, Ma W, Yan H . Nat Commun , 2016 . ( 7 ): 13094 .
Zhou N, Lin H, Lou S J, Yu X, Guo P J, Manley E F, Loser S, Hartnett P, Huang H, Wasielewski M R . Adv Energy Mater , 2014 . 4 ( 3 ): 1300785 DOI:10.1002/aenm.201300785http://doi.org/10.1002/aenm.201300785 .
Bauer N, Zhang Q, Zhao J, Ye L, Kim J H, Constantinou I, Yan L, So F, Ade H, Yan H . J Mater Chem A , 2017 . 5 ( 10 ): 4886 - 4893 . DOI:10.1039/C6TA10450Ahttp://doi.org/10.1039/C6TA10450A .
Perry E E, Chiu C Y, Moudgil K, Schlitz R A, Takacs C J, O'Hara K A, Labram J G, Glaudell A M, Sherman J B, Barlow S . Chem Mater , 2017 . 29 ( 22 ): 9742 - 9750 . DOI:10.1021/acs.chemmater.7b03516http://doi.org/10.1021/acs.chemmater.7b03516 .
Schlitz R A, Brunetti F G, Glaudell A M, Miller P L, Brady M A, Takacs C J, Hawker C J, Chabinyc M L . Adv Mater , 2014 . 26 ( 18 ): 2825 - 2830 . DOI:10.1002/adma.v26.18http://doi.org/10.1002/adma.v26.18 .
Liu J, Qiu L, Portale G, Koopmans M, ten Brink G, Hummelen J C, Koster L J A . Adv Mater , 2017 . 29 ( 36 ): 1701641 DOI:10.1002/adma.201701641http://doi.org/10.1002/adma.201701641 .
Qiu L, Liu J, Alessandri R, Qiu X K, Koopmans M, Havenith R W, Marrink S J, Chiechi R C, Koster L J A, Hummelen J C . J Mater Chem A , 2017 . 5 ( 40 ): 21234 - 21241 . DOI:10.1039/C7TA06609Khttp://doi.org/10.1039/C7TA06609K .
Yang C Y, Jin W L, Wang J, Ding Y F, Nong S, Shi K, Lu Y, Dai Y Z, Zhuang F D, Lei T . Adv Mater , 2018 . 49 1802850 .
0
Views
103
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution