浏览全部资源
扫码关注微信
1.中国科学院化学研究所 中国科学院工程塑料重点实验室 北京 100190
2.中国科学院大学 北京 100049
Published:2019-3,
Published Online:24 December 2018,
Received:15 October 2018,
Revised:23 November 2018,
扫 描 看 全 文
Cui Su, Guang-yu Shi, Du-jin Wang, Guo-ming Liu. A Model for the Crystal Orientation of Polymers Confined in 1D Nanocylinders. [J]. Acta Polymerica Sinica 50(3):281-290(2019)
Cui Su, Guang-yu Shi, Du-jin Wang, Guo-ming Liu. A Model for the Crystal Orientation of Polymers Confined in 1D Nanocylinders. [J]. Acta Polymerica Sinica 50(3):281-290(2019) DOI: 10.11777/j.issn1000-3304.2019.18218.
利用X射线极图法研究了等规聚丙烯(
i
PP)在阳极氧化铝模板(AAO)中的取向结构. 实验结果表明,
i
PP在AAO内主要的取向模式为倒易空间的
b
*
轴或
a
*
轴平行于AAO的孔轴(
$${\vec{{n}}}$$
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=13604104&type=
). 这2种取向模式的比例同结晶条件有关:随着降温速率增加,高分子的整体取向逐渐变弱,但是
a
*
║
$${\vec{{n}}}$$
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=13604111&type=
的取向变化更明显. 在液氮淬冷的条件下,
i
PP几乎不能结晶. 实验结果同文献所报道的“动力学选择机理”不一致. 借助简化的“一维格子”模型,模拟了成核速率、生长速率对整体取向的影响. 结果表明,高分子在受限空间中的取向存在3个区域:成核速率极高而生长速率极低时,晶体生长尺寸很小,样品表现为各向同性;中间区域各晶面的相对生长速率决定了最终取向结构;成核速率极低而生长速率极高时,纳米孔中高分子一旦成核,晶体就会很快生长至充满整个孔道,所有(hk0)晶面均可生长. 综合实验和模拟结果,提出了高分子受限在一维纳米孔道中的晶体取向模型.
Anodic aluminum oxide (AAO) templates with parallel aligned nanochannels provide an ideal scenario for constructing the one-dimensional (1D) nanoconfinement environment. In recent years
while many studies have been conducted on the orientation of crystalline polymers in AAO
a universal model is still absent for explaining the diverse or even contradictory observations in different polymer systems and further understanding the complicated evolution of orientation upon changing the crystallization conditions. In this work
the texture of isotactic polypropylene (
i
PP) in AAO template was studied by X-ray pole figure analysis
with two major modes of uniaxial orientation
b
*
or
a
*
║
$${\vec{{n}}}$$
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=13604117&type=
(pore axis)
observed for
i
PP. Furthermore
the relative ratio of these two orientation modes varied with the crystallization conditions
indicating that their temperature dependence differed from each other. Specifically
the orientation degree of both
b
*
and
a
*
║
$${\vec{{n}}}$$
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=13604124&type=
gradually decreased with raised cooling rate
and the changes in the latter were more pronounced. Moreover
<
110
>
*║
$${\vec{{n}}}$$
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=13604128&type=
orientation emerged with the increase of cooling rate
and the relative population of this orientation was also enhanced. Samples would be amorphous if quenched directly into liquid nitrogen. As the previous model apparently failed to explain these observations
a simple " 1D lattice” model was proposed herein to numerically simulate the crystallization of polymer within 1D channel. In particular
it enabled to explore the influences of nucleation rate and crystal growth rate at a wide range of scales. According to the model established
orientation behavior of polymer in 1D nanocylinders can be divided into three zones. High nucleation rate combined with low growth rate will result in nearly isotropic structure
which corresponds to the crystallization under very large supercooling. The intermediate zone holds moderate nucleation rate and growth rate
orientation structure in which follows the rule of " direction of the fastest growth aligns with the channel axis”. When the nucleation rate is very low and the growth rate is high
any (hk0) will grow freely to fill the whole channel under static conditions
which is the scenario described earlier by the " kinetic selection” model. In summary
comparison of experimental and simulation results proved that the complete model developed in this study can better explain those diverse observations recorded in literature.
高分子结晶受限取向阳极氧化铝模板等规聚丙烯
Polymer crystallizationConfinementOrientationAnodic aluminum oxideIsotactic polypropylene
Samanta P, Liu C L, Nandan B, Chen H L. Chapter 13-Crystallization of Polymers in Confined Space. In: Thomas S, Gowd E B, Kalarikkal N, eds. Crystallization in Multiphase Polymer Systems. Kidlington Oxford (UK): Elsevier, 2018. 367 – 431
Mary Michell R, Blaszczyk-Lezak I, Mijangos C, Mueller A J . J Polym Sci, Part B: Polym Phys , 2014 . 52 ( 18 ): 1179 - 1194 . DOI:10.1002/polb.23553http://doi.org/10.1002/polb.23553 .
Müller A J, Balsamo V, Arnal M L . Adv Polym Sci , 2005 . 190 1 - 63 . DOI:10.1007/b138192http://doi.org/10.1007/b138192 .
Müller M L, Arnal M L, Lorenzo A T. Crystallization in Nano-Confined Polymeric Systems. In: Piorkowska E, Rutledge G C, eds. Handbook of Polymer Crystallization. Hoboken, New Jersey (USA): John Wiley and Sons, 2013. 347 – 378
Michell R M, Müller A J . Prog Polym Sci , 2016 . 54-55 183 - 213 . DOI:10.1016/j.progpolymsci.2015.10.007http://doi.org/10.1016/j.progpolymsci.2015.10.007 .
Cheng J F, Pu H T . Chinese J Polym Sci , 2016 . 34 ( 12 ): 1411 - 1422 . DOI:10.1007/s10118-016-1850-0http://doi.org/10.1007/s10118-016-1850-0 .
Zhang Lianbin(张连斌), Wang Ke(王珂), Zhu Jintao(朱锦涛) . 高分子学报 , Acta Polymerica Sinica , 2017 . ( 8 ): 1261 - 1276.
Vanroy B, Wubbenhorst M, Napolitano S . ACS Macro Lett , 2013 . 2 ( 2 ): 168 - 172 . DOI:10.1021/mz300641xhttp://doi.org/10.1021/mz300641x .
Rittigstein P, Priestley R D, Broadbelt L J, Torkelson J M . Nat Mater , 2007 . 6 ( 4 ): 278 - 282 . DOI:10.1038/nmat1870http://doi.org/10.1038/nmat1870 .
Huang P, Zhu L, Cheng S Z D, Ge Q, Quirk R P, Thomas E L, Lotz B, Hsiao B S, Liu L Z, Yeh F J . Macromolecules , 2001 . 34 ( 19 ): 6649 - 6657 . DOI:10.1021/ma010671xhttp://doi.org/10.1021/ma010671x .
Huang P, Guo Y, Quirk R P, Ruan J J, Lotz B, Thomas E L, Hsiao B S, Avila-Orta C A, Sics I, Cheng S Z D . Polymer , 2006 . 47 ( 15 ): 5457 - 5466 . DOI:10.1016/j.polymer.2005.06.129http://doi.org/10.1016/j.polymer.2005.06.129 .
Nakagawa S, Kadena K I, Ishizone T, Nojima S, Shimizu T, Yamaguchi K, Nakahama S . Macromolecules , 2012 . 45 ( 4 ): 1892 - 1900 . DOI:10.1021/ma202566fhttp://doi.org/10.1021/ma202566f .
Barroso-Bujans F, Palomino P, Fernandez-Alonso F, Rudic S, Alegria A, Colmenero J, Enciso E . Macromolecules , 2014 . 47 ( 24 ): 8729 - 8737 . DOI:10.1021/ma501607ehttp://doi.org/10.1021/ma501607e .
Jiang S C, Qiao C D, Tian S Z, Ji X L, An L J, Jiang B Z . Polymer , 2001 . 42 ( 13 ): 5755 - 5761 . DOI:10.1016/S0032-3861(01)00026-Xhttp://doi.org/10.1016/S0032-3861(01)00026-X .
Jiang S, Yu D, Ji X, An L, Jiang B . Polymer , 2000 . 41 ( 6 ): 2041 - 2046 . DOI:10.1016/S0032-3861(99)00342-0http://doi.org/10.1016/S0032-3861(99)00342-0 .
Zhao W W, Su Y L, Gao X, Qian Q Y, Chen X, Wittenbrink R, Wang D J . J Polym Sci, Part B: Polym Phys , 2017 . 55 ( 6 ): 498 - 505 . DOI:10.1002/polb.v55.6http://doi.org/10.1002/polb.v55.6 .
Zhao W W, Su Y L, Muller A J, Gao X, Wang D J . J Polym Sci, Part B: Polym Phys , 2017 . 55 ( 21 ): 1608 - 1616 . DOI:10.1002/polb.24418http://doi.org/10.1002/polb.24418 .
Zhao W W, Su Y L, Wang D J . Mod Phys Lett B , 2017 . 31 ( 23 ): 1730003 DOI:10.1142/S0217984917300034http://doi.org/10.1142/S0217984917300034 .
Pan L, Tao Q H, Zhang S D, Wang S S, Zhang J, Wang S H, Wang Z Y, Zhang Z P . Sol Energy Mater Sol Cells , 2012 . 98 66 - 70 . DOI:10.1016/j.solmat.2011.09.020http://doi.org/10.1016/j.solmat.2011.09.020 .
Su Y L, Liu G M, Xie B Q, Fu D S, Wang D J . Acc Chem Res , 2014 . 47 ( 1 ): 192 - 201 . DOI:10.1021/ar400116chttp://doi.org/10.1021/ar400116c .
Masuda H, Fukuda K . Science , 1995 . 268 ( 5216 ): 1466 - 1468 . DOI:10.1126/science.268.5216.1466http://doi.org/10.1126/science.268.5216.1466 .
Michell R M, Blaszczyk-Lezak I, Mijangos C, Müller A J . Polymer , 2013 . 54 ( 16 ): 4059 - 4077 . DOI:10.1016/j.polymer.2013.05.029http://doi.org/10.1016/j.polymer.2013.05.029 .
Wu H, Higaki Y, Takahara A . Prog Polym Sci , 2018 . 77 95 - 117 . DOI:10.1016/j.progpolymsci.2017.10.004http://doi.org/10.1016/j.progpolymsci.2017.10.004 .
Schultz J M . Macromolecules , 1996 . 29 ( 8 ): 3022 - 3024 . DOI:10.1021/ma950673fhttp://doi.org/10.1021/ma950673f .
Guan Y, Liu G M, Gao P Y, Li L, Ding G Q, Wang D J . ACS Macro Lett , 2013 . 2 ( 3 ): 181 - 184 . DOI:10.1021/mz300592vhttp://doi.org/10.1021/mz300592v .
Woo E, Huh J, Jeong Y G, Shin K . Phys Rev Lett , 2007 . 98 ( 13 ): 136103 DOI:10.1103/PhysRevLett.98.136103http://doi.org/10.1103/PhysRevLett.98.136103 .
Wu H, Wang W, Huang Y, Wang C, So Z H . Macromolecules , 2008 . 41 ( 20 ): 7755 - 7758 . DOI:10.1021/ma801498bhttp://doi.org/10.1021/ma801498b .
Duran H, Steinhart M, Butt H J, Floudas G . Nano Lett , 2011 . 11 ( 4 ): 1671 - 1675 . DOI:10.1021/nl200153chttp://doi.org/10.1021/nl200153c .
Reid D K, Ehlinger B A, Shao L, Lutkenhaus J L . J Polym Sci, Part B: Polym Phys , 2014 . 52 ( 21 ): 1412 - 1419 . DOI:10.1002/polb.v52.21http://doi.org/10.1002/polb.v52.21 .
Suzuki Y, Duran H, Akram W, Steinhart M, Floudas G, Butt H J . Soft Matter , 2013 . 9 ( 38 ): 9189 - 9198 . DOI:10.1039/c3sm50907ahttp://doi.org/10.1039/c3sm50907a .
Suzuki Y, Duran H, Steinhart M, Butt H J, Floudas G . Macromolecules , 2014 . 47 ( 5 ): 1793 - 1800 . DOI:10.1021/ma4026477http://doi.org/10.1021/ma4026477 .
Shi G Y, Liu G M, Su C, Chen H M, Chen Y, Su Y L, Muller A J, Wang D J . Macromolecules , 2017 . 50 ( 22 ): 9015 - 9023 . DOI:10.1021/acs.macromol.7b02284http://doi.org/10.1021/acs.macromol.7b02284 .
Steinhart M, Göring P, Dernaika H, Prabhukaran M, Gösele U, Hempel E, Thurn-Albrecht T . Phys Rev Lett , 2006 . 97 ( 2 ): 027801 DOI:10.1103/PhysRevLett.97.027801http://doi.org/10.1103/PhysRevLett.97.027801 .
Loo Y L, Register R A. Crystallization within Block Copolymer Mesophases. In: Hamley I W, eds. Developments in Block Copolymer Science and Technology. Chichester, West Sussex (UK): John Wiley & Sons, 2004. 213 – 243
Ma Y, Hu W, Hobbs J, Reiter G . Soft Matter , 2008 . 4 ( 3 ): 540 - 543 . DOI:10.1039/b715065bhttp://doi.org/10.1039/b715065b .
Michell R M, Lorenzo A T, Muller A J, Lin M C, Chen H L, Blaszczyk-Lezak I, Martin J, Mijangos C . Macromolecules , 2012 . 45 ( 3 ): 1517 - 1528 . DOI:10.1021/ma202327fhttp://doi.org/10.1021/ma202327f .
Liu C L, Chen H L . Macromolecules , 2017 . 50 ( 2 ): 631 - 641 . DOI:10.1021/acs.macromol.6b02347http://doi.org/10.1021/acs.macromol.6b02347 .
Liu C L, Chen H L . Soft Matter , 2018 . 14 ( 26 ): 5461 - 5468 . DOI:10.1039/C8SM00795Khttp://doi.org/10.1039/C8SM00795K .
Maiz J, Schafer H, Rengarajan G T, Hartmann-Azanza B, Eickmeier H, Haase M, Mijangos C, Steinhart M . Macromolecules , 2013 . 46 ( 2 ): 403 - 412 . DOI:10.1021/ma3023876http://doi.org/10.1021/ma3023876 .
Shin K, Woo E, Jeong Y G, Kim C, Huh J, Kim K W . Macromolecules , 2007 . 40 ( 18 ): 6617 - 6623 . DOI:10.1021/ma070994ehttp://doi.org/10.1021/ma070994e .
Wu Hui(吴慧), Wang Wei(王巍), Su Zhaohui(苏朝晖) . 高分子学报 , Acta Polymerica Sinica , 2009 . ( 5 ): 425 - 429 . DOI:10.3321/j.issn:1000-3304.2009.05.004http://doi.org/10.3321/j.issn:1000-3304.2009.05.004 .
Shingne N, Geuss M, Thurn-Albrecht T, Schmidt H W, Mijangos C, Steinhart M, Martin J . J Phys Chem B , 2017 . 121 ( 32 ): 7723 - 7728 . DOI:10.1021/acs.jpcb.7b05424http://doi.org/10.1021/acs.jpcb.7b05424 .
Martín J, Iturrospe A, Cavallaro A, Arbe A, Stingelin N, Ezquerra T A, Mijangos C, Nogales A . Chem Mater , 2017 . 29 ( 8 ): 3515 - 3525 . DOI:10.1021/acs.chemmater.6b05391http://doi.org/10.1021/acs.chemmater.6b05391 .
Li L, Liu J, Qin L, Zhang C, Sha Y, Jiang J, Wang X, Chen W, Xue G, Zhou D . Polymer , 2017 . 110 273 - 283 . DOI:10.1016/j.polymer.2016.12.081http://doi.org/10.1016/j.polymer.2016.12.081 .
Su C, Shi G Y, Li X L, Zhang X Q, Müller A J, Wang D J, Liu, G M. Macromolecules, DOI: 10.1021/acs.macromol.8b01801
Natta G, Corradini P . Il Nuovo Cimento (1955-1965) , 1960 . 15 ( 1 ): 40 - 51.
Lovinger A J . J Polym Sci, Part B: Polym Phys , 1983 . 21 ( 1 ): 97 - 110 . DOI:10.1002/pol.1983.180210107http://doi.org/10.1002/pol.1983.180210107 .
Yamada K, Kajioka H, Nozaki K, Toda A . J Macromol Sci Part B-Phys , 2011 . 50 ( 2 ): 236 - 247.
Zhang B, Chen J, Liu B, Wang B, Shen C, Reiter R, Chen J, Reiter G . Macromolecules , 2017 . 50 ( 16 ): 6210 - 6217 . DOI:10.1021/acs.macromol.7b01381http://doi.org/10.1021/acs.macromol.7b01381 .
0
Views
27
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution