Heterophasic copolymerization of propylene based on Ziegler-Natta catalyst is one of the major methods for preparing polypropylene/ethylene propylene rubber (PP/EPR) heterophasic copolymer. Compared with traditional physical blending method
PP/EPR heterophasic copolymer can achieve even dispersion of EPR phase in PP matrix with smaller phase domain size. However
for linear EPR
it is prone to flow and aggregate during polymerization
resulting in adhesion between/among polymer particles. In addition
the PP/EPR heterophasic copolymer will undergo significant phase separation during melt processing
and the EPR droplets will aggregate into larger rubber particles. Moreover
the longer the melting processing time
the more serious the phase separation of PP phase and EPR phase
and the larger the size of rubber particles. Therefore
it is very important to control the particle morphology and EPR phase morphology of propylene heterophasic copolymer. In this study
a dichlorosilane functionalized nonconjugated
α
ω
-diolefin
di(5-hexenyl)dichlorosilane
was introduced into the polymerization and participated in the random copolymerization of ethylene/propylene to prompt cross-linking of EPR. The results showed that the dichlorosilane functionalized nonconjugated
α
ω
-diolefin rendered the formation of cross-linked EPR
and the flow and aggregation of EPR droplets were effectively controlled. The surface morphology of PP/EPR copolymer particles was observed by SEM
which showed that all samples had good particle morphology. TEM and AFM results showed that EPR was evenly dispersed in the PP matrix with a small phase domain size. Moreover
the condensation reaction of the Si―Cl group in the presence of water further enhanced the branching/cross-linking of the copolymer
which led to a greater extent stabilized the phase morphology of the copolymer. As a result
the mechanical properties of PP/EPR copolymer were greatly improved.
Antunes C F, van Duin M, Machado A V. Mater Chem Phys , 2012 . 133 ( 1 ): 410 - 418 . DOI:10.1016/j.matchemphys.2012.01.053http://doi.org/10.1016/j.matchemphys.2012.01.053 .
Bai J, Shi Z X, Yin J, Tian M. Polym Chem , 2014 . 5 ( 23 ): 6761 - 6769 . DOI:10.1039/C4PY00780Hhttp://doi.org/10.1039/C4PY00780H .
Liu Y Q, Zhang X H, Gao H M, Huang F, Tan B H, Wei G, Qiao J L. Polymer , 2004 . 45 ( 1 ): 275 - 286 . DOI:10.1016/j.polymer.2003.11.001http://doi.org/10.1016/j.polymer.2003.11.001 .
Lu X S, Qiao X Y, Watanabe H, Gong X L, Yang T, Li W, Sun K, Li M, Yang K, Xie H G. Rheol Acta , 2012 . 51 ( 1 ): 37 - 50 . DOI:10.1007/s00397-011-0582-xhttp://doi.org/10.1007/s00397-011-0582-x .
Zhao Y S, Su B, Zhong L C, Chen F, Fu Q. Ind Eng Chem Res , 2014 . 53 ( 39 ): 15287 - 15295 . DOI:10.1021/ie5022514http://doi.org/10.1021/ie5022514 .
Liu Y M, Xu J T, Fu Z S, Fan Z Q. J Appl Polym Sci , 2013 . 127 ( 2 ): 1346 - 1358 . DOI:10.1002/app.37689http://doi.org/10.1002/app.37689 .
Moballegh L, Hakim S, Morshedian J, Nekoomanesh M. J Polym Res , 2015 . 22 ( 5 ): 1 - 11.
Chen F, Qiu B, Shangguan Y, Song Y, Zheng Q. Mater Des , 2015 . 69 56 - 63 . DOI:10.1016/j.matdes.2014.12.052http://doi.org/10.1016/j.matdes.2014.12.052 .
l'Abee R M A, van Duin M, Spoelstra A B, Goossens J G P. Soft Matter , 2010 . 6 ( 8 ): 1758 - 1768 . DOI:10.1039/b913458ahttp://doi.org/10.1039/b913458a .
Liang J Z, Li R K Y. J Appl Polym Sci , 2000 . 77 ( 2 ): 409 - 417 . DOI:10.1002/(SICI)1097-4628(20000711)77:2<409::AID-APP18>3.0.CO;2-Nhttp://doi.org/10.1002/(SICI)1097-4628(20000711)77:2<409::AID-APP18>3.0.CO;2-N .
Tiwari R R, Paul D R. Polymer , 2011 . 52 ( 24 ): 5595 - 5605 . DOI:10.1016/j.polymer.2011.10.002http://doi.org/10.1016/j.polymer.2011.10.002 .
Lu L, Niu H, Dong J Y, Zhao X, Hu X. J Appl Polym Sci , 2010 . 118 ( 6 ): 3218 - 3226 . DOI:10.1002/app.32553http://doi.org/10.1002/app.32553 .
Alshaiban A, Soares J B P. Macromol React Eng , 2014 . 8 ( 10 ): 723 - 735 . DOI:10.1002/mren.201400028http://doi.org/10.1002/mren.201400028 .
Alshaiban A, Soares J B P. Macromol React Eng , 2012 . 6 ( 6-7 ): 265 - 274 . DOI:10.1002/mren.201200002http://doi.org/10.1002/mren.201200002 .
Yan F, Zhang X, Liu F, Li X, Zhang Z. Compos Part B , 2015 . 75 47 - 52 . DOI:10.1016/j.compositesb.2015.01.030http://doi.org/10.1016/j.compositesb.2015.01.030 .
McKenna T F, Bouzid D, Matsunami S, Sugano T. Polym React Eng , 2003 . 11 ( 2 ): 177 - 197 . DOI:10.1081/PRE-120021074http://doi.org/10.1081/PRE-120021074 .
Kamdar A R, Hu Y S, Ansems P, Chun S P, Hiltner A, Baer E. Macromolecules , 2006 . 39 ( 4 ): 1496 - 1506 . DOI:10.1021/ma052214chttp://doi.org/10.1021/ma052214c .
Synthesis of Long-chain-branched High-density Polyethylene with Ziegler-Natta Catalyst and ω-Alkenylmethyldichlorosilane Copolymerization-Hydrolysis Chemistry
Ethylene/Isoprene Copolymerization with Supported Ziegler-Natta Catalyst Containing Internal Electron Donor
Flowability of Ethylene-Propylene Copolymer in Situ-regulated by Long-chain Nonconjugated α,ω-Diolefin
Effect of Hydrogen on Copolymerization between Dichlorosilane-functionalized Nonconjugated α,ω-Diolefin and Propylene
Particle Morphology Control of Polypropylene Heterophasic Copolymer at Increased EPR Content by Simultaneous Cross-linking
Related Author
No data
Related Institution
Shaanxi Yanchang Zhongmei Yulin Energy & Chemical Company
CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Acadamy of Sciences
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
Institute for Petrochemical Research, PetroChina Company Limited
Petrochemical Research Institute of PetroChina Co., Ltd