浏览全部资源
扫码关注微信
1.四川大学高分子科学与工程学院 高分子材料工程国家重点实验室 成都 610065
2.中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032
Published:2020-1,
Published Online:3 December 2019,
Received:29 August 2019,
Revised:16 October 2019,
扫 描 看 全 文
Peng Dong, Ke Wang, Jun-fang Li, Qiang Fu. Chain Entanglement Regulation of Sintered Ultrahigh Molecular Weight Polyethylene and Its Effect on Properties. [J]. Acta Polymerica Sinica 51(1):117-124(2020)
Peng Dong, Ke Wang, Jun-fang Li, Qiang Fu. Chain Entanglement Regulation of Sintered Ultrahigh Molecular Weight Polyethylene and Its Effect on Properties. [J]. Acta Polymerica Sinica 51(1):117-124(2020) DOI: 10.11777/j.issn1000-3304.2020.19159.
利用新的单中心Ziegler-Natta (Z-N)催化剂,通过干预分子链的生长与聚集行为,可获得低缠结的超高分子量聚乙烯(UHMWPE)初生树脂. 本研究利用这类低缠结UHMWPE,通过设置不同的烧结温度(
T
s
)来改变熔体缠结状态,并探讨了链缠结程度对烧结制品结构与性能的影响. 实验结果表明
T
s
= 220 °C下,UHMWPE样品发生显著的复缠,造成高缠结度;而
T
s
= 170 °C下,初始低缠结状态能够得以充分保留,从而获得了缠结度具有明显差别的不同样品. 示差扫描量热法(DSC)测试表明,在
T
s
= 170 °C下,低缠结度有利于在随后等温及冷却结晶过程中生成高熔点(最高达141 °C)晶体与高的结晶度(最高达65%). 力学测试表明低缠结度制品的综合力学性能显著提升,其中屈服强度提高72%,拉伸断裂强度提升139%,弹性模量提升162%以及断裂伸长率提升36%,实现了同时增强增韧. 这就提供了一种从调节链缠结温度实现UHMWPE烧结制品高性能化的新思路.
Ultrahigh molecular weight polyethylene (UHMWPE) shows outstanding toughness
wear resistance and chemical inertness as a high performance polymer. However
extremely high entanglement degree results in high viscosity and processing difficulties
which greatly limits the applications. To address this issue
the new single-site Z-N catalysts have been used to regulate the growth and cohesion of molecular chains during the polymerization of ethylene in recent years
by which nascent UHMWPE with low entanglement degree and excellent processing capability can be obtained. With such UHMWPE nascent powder
different sintering temperatures (
T
s
) of 170
190 and 220 °C were set
respectively
then a isothermal crystallization step with precise temperature control was added
and the effect of chain entanglement on the structures and properties of sintered UHMWPE was investigated. Through the tensile tests at 160 °C
it was confirmed that UHMWPE chains significantly reentangled when
T
s
= 220 °C
resulting in high degree of entanglement; while the initial low entanglement state can be sufficiently reserved when
T
s
= 170 °C
M
e
reached 12.3 kg/mol. Therefore
the samples with distinct different entanglement states can be obtained. DSC results have shown that low entanglement degree was beneficial to the formation of crystal lamellae with higher melting temperature (up to 141 °C) and high crystallinity (up to 65%) through isothermal crystallization steps
which was close to the level of nascent UHMWPE powder. Moreover
it proved that the integrated mechanical performance of the product sintered at 170 °C was significantly improved. The yield strength was increased by up to 72%
the tensile strength by 139%
the elastic modulus by 162%
and the elongation at break by 36%
realizing simultaneously strengthening and toughening of sintered UHMWPE materials. This provides a new strategy for the high performance UHMWPE sintered products from the perspective of chain entanglement regulation.
超高分子量聚乙烯烧结成型结晶调控链缠结力学增强
Ultrahigh molecular weight polyethyleneSintering moldingCrystallization regulationChain entanglementMechanical enhancement
Zuo J D, Zhu Y M, Liu S M, Jiang Z J, Zhao J Q. Polym Bull , 2007 . 58 ( 4 ): 711 - 722 . DOI:10.1007/s00289-006-0711-3http://doi.org/10.1007/s00289-006-0711-3 .
Jacobs, Joshua J. J Bone Joint Surg , 2004 . 87 ( 8 ): 1906 - 1906.
Tian M, Tao Z, Gao P G, Zhang J C. Chinese Sci Bull , 2013 . 58 ( 8 ): 945 - 948 . DOI:10.1007/s11434-012-5555-7http://doi.org/10.1007/s11434-012-5555-7 .
Liu X, Li M, Li X, Deng X, Zhang X, Yuan Y, Liu Y, Chen X. J Mater Sci , 2018 . 53 ( 9 ): 1 - 15.
Oonishi H, Kim S C, Kyomoto M, Masuda S, Asano T, Clarke I C. J Biomed Mater Res B , 2010 . 74B ( 2 ): 754 - 759.
Ansari F, Gludovatz B, Kozak A, Ritchie R O, Pruitt L A. J Mech Behav of Biomed Mater , 2016 . 60 267 - 279 . DOI:10.1016/j.jmbbm.2016.02.014http://doi.org/10.1016/j.jmbbm.2016.02.014 .
Chen Dongyang(陈东洋), Liu Cheng(刘程), Wang Jinyan(王锦艳), Pan Chunyue(潘春跃), Yu Guiming(喻桂朋),Jian Xigao(蹇锡高). Acta Polymerica Sinica(高分子学报) , 2018 . ( 5 ): 559 - 570 . DOI:10.11777/j.issn1000-3304.2017.17298http://doi.org/10.11777/j.issn1000-3304.2017.17298 .
Shen L, Peng M, Qiao F, Zhang J. Chinese J Polym Sci , 2008 . 26 ( 6 ): 653 - 657 . DOI:10.1142/S0256767908003394http://doi.org/10.1142/S0256767908003394 .
Yu Junrong(于俊荣), Luan Xiuna(栾秀娜), Hu Zuming(胡祖明), Liu Zhaofeng(刘兆峰). Acta Polymerica Sinica(高分子学报) , 2005 . ( 5 ): 764 - 768 . DOI:10.3321/j.issn:1000-3304.2005.05.024http://doi.org/10.3321/j.issn:1000-3304.2005.05.024 .
Qing Jianhua(秦建华), Zhang Zhong(张仲), Liu Chunhui(刘春晖), Gan Wenfeng(高文风). Plastics Science and Technology(塑料科技) , 2009 . 37 ( 5 ): 56 - 58 . DOI:10.3969/j.issn.1005-3360.2009.05.008http://doi.org/10.3969/j.issn.1005-3360.2009.05.008 .
Huang Y F, Xu J Z, Zhang Z C, Xu L, Li L B, Li J F, Li Z M. Chem Eng J , 2017 . 315 132 - 141 . DOI:10.1016/j.cej.2016.12.133http://doi.org/10.1016/j.cej.2016.12.133 .
Truss R W, Han K S, Wallace J F, Geil P H. Polym Eng Sci , 1980 . 20 ( 11 ): 747 - 755 . DOI:10.1002/pen.760201109http://doi.org/10.1002/pen.760201109 .
Rezaei M, Ebrahimi N G, Kontopoulou M. Polym Eng Sci , 2010 . 45 ( 5 ): 678 - 686.
Hosseinnezhad R, Talebi S, Rezaei M. J Elastom Plast , 2017 . 49 ( 7 ): 609 - 629 . DOI:10.1177/0095244316681833http://doi.org/10.1177/0095244316681833 .
Gao P, Cheung M K, Leung T Y. Polymer , 1996 . 37 ( 15 ): 3265 - 3272 . DOI:10.1016/0032-3861(96)88472-2http://doi.org/10.1016/0032-3861(96)88472-2 .
Kim Y H, Wool R P. Macromolecules , 1983 . 16 ( 7 ): 1115 - 1120 . DOI:10.1021/ma00241a013http://doi.org/10.1021/ma00241a013 .
Halldin G W, Kamel I A L. Polym Eng Sci , 2010 . 17 ( 1 ): 21 - 26.
Deplancke T, Lame O, Rousset F, Aguili I, Seguela R, Vigier G. Macromolecules , 2013 . 47 ( 1 ): 197 - 207.
Deplancke T, Lame O, Rousset F, Seguela R, Vigier G. Macromolecules , 2015 . 48 ( 15 ): 5328 - 5338 . DOI:10.1021/acs.macromol.5b00618http://doi.org/10.1021/acs.macromol.5b00618 .
Kennedy M A, Peacock A J, Mandelkern L. Macromolecules , 1994 . 27 ( 19 ): 5297 - 5310 . DOI:10.1021/ma00097a009http://doi.org/10.1021/ma00097a009 .
Pang Y, Xia D, Zhang X, Liu K, Chen E, Han C C, Wang D. Polymer , 2008 . 49 ( 10 ): 2568 - 2577 . DOI:10.1016/j.polymer.2008.03.050http://doi.org/10.1016/j.polymer.2008.03.050 .
Parasnis N, Ramani K. J Mater Sci-Mater M , 1998 . 9 ( 3 ): 165 - 172 . DOI:10.1023/A:1008871720389http://doi.org/10.1023/A:1008871720389 .
Brooks N W, Ghazali M, Duckett R A, Unwin A P, Ward I M. Polymer , 1998 . 40 ( 4 ): 821 - 825.
Humbert S, Lame O, Vigier G. Polymer , 2009 . 50 ( 15 ): 3755 - 3761 . DOI:10.1016/j.polymer.2009.05.017http://doi.org/10.1016/j.polymer.2009.05.017 .
Rastogi S, Spoelstra A B, Goossens J G P, Lemstra P J. Macromolecules , 1999 . 30 ( 25 ): 7880 - 7889.
Wang Yiren(王一任), Fan Zhongyong(范仲勇), Yu Ying(于瀛), Bu Haishan(卜海山). Journal of Fudan University (Natural Science)(复旦学报: 自然科学版) , 2002 . 41 ( 4 ): 365 - 369.
Liu Tianyu(刘天宇), Jiang Weijiao(蒋维娇), Yang Weixing(杨卫星), Zhang Qin(张琴), Fu Qiang(傅强). Acta Polymerica Sinica(高分子学报) , 2018 . ( 8 ): 1107 - 1115 . DOI:10.11777/j.issn1000-3304.2018.18053http://doi.org/10.11777/j.issn1000-3304.2018.18053 .
Jin Y L, Liu L, Wang Y J, Liu Z, Liu B P. Chinese J Polym Sci , 2019 . 37 995 - 1004 . DOI:10.1007/s10118-019-2295-zhttp://doi.org/10.1007/s10118-019-2295-z .
Pandey A, Champouret Y, Rastogi S. Macromolecules , 2011 . 44 ( 12 ): 4952 - 4960 . DOI:10.1021/ma2003689http://doi.org/10.1021/ma2003689 .
Tuskaev V A, Gagieva S C, Kurmaev D A, Vasil’ev V G, Kolosov N A, Zubkevich S V, Mikhaylik E S, Golubev E K, Nikiforova G G, Zhizhko P A. Chinese J Polym Sci , 2018 . 37 ( 5 ): 471 - 477.
Liu K, de Boer E L, Yao Y, Romano D, Ronca S, Rastogi S. Macromolecules , 2016 . 49 ( 19 ): 7497 - 7509 . DOI:10.1021/acs.macromol.6b01173http://doi.org/10.1021/acs.macromol.6b01173 .
Rastogi S, Lippits D R, Peters G W, Graf R, Yao Y, Spiess H W. Nat Mater , 2005 . 4 ( 8 ): 635 - 641 . DOI:10.1038/nmat1437http://doi.org/10.1038/nmat1437 .
Sun Xiuli(孙秀丽), Tang Yong(唐勇). Acta Polymerica Sinica(高分子学报) , 2017 . ( 7 ): 1019 - 1037 . DOI:10.11777/j.issn1000-3304.2017.17033http://doi.org/10.11777/j.issn1000-3304.2017.17033 .
Deplancke T, Lame O, Barrau S, Ravi K, Dalmas F. Polymer , 2017 . 111 204 - 213.
Bellehumeur C T, Bisaria M K, Vlachopoulos J. Polym Eng Sci , 1996 . 36 ( 17 ): 2198 - 2207 . DOI:10.1002/pen.10617http://doi.org/10.1002/pen.10617 .
Wunderlich B, Cormier C. J Polym Sci, Part B: Polym Phys , 1967 . 5 ( 5 ): 987 - 988 . DOI:10.1002/pol.1967.160050514http://doi.org/10.1002/pol.1967.160050514 .
Xue Y Q, Tervoort T A, Lemstra P J. Macromolecules , 1998 . 31 ( 9 ): 3075 - 3080 . DOI:10.1021/ma970544uhttp://doi.org/10.1021/ma970544u .
Treloar L R G, Montgomery D J. The Physics of Rubber Elasticity. Oxford: Clarendon Press, 1958. 80 − 99
de Gennes P G. C R Acad Sci Ser IIb-Mec Phys Chim Astron , 1995 . 321 363 - 365.
0
Views
79
下载量
8
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution