浏览全部资源
扫码关注微信
1.中国科学院化学研究所 中国科学院工程塑料重点实验室 北京 100190
2.中国科学院大学 北京 100049
Published:2020-5,
Published Online:14 April 2020,
Received:6 January 2020,
Revised:4 February 2020,
扫 描 看 全 文
Guo-ming Liu, Guang-yu Shi, Du-jin Wang. Research Progress on Polymer Crystallization Confined within Nano-porous AAO Templates. [J]. Acta Polymerica Sinica 51(5):501-516(2020)
Guo-ming Liu, Guang-yu Shi, Du-jin Wang. Research Progress on Polymer Crystallization Confined within Nano-porous AAO Templates. [J]. Acta Polymerica Sinica 51(5):501-516(2020) DOI: 10.11777/j.issn1000-3304.2020.20003.
高分子材料在微纳米尺度常常表现出不同于本体的物理性质. 对结晶性高分子来说,在纳米受限空间的成核机理、结晶结构和动力学特征都与本体材料有所不同. 本文总结了近年来基于多孔氧化铝纳米模板(AAO)开展的高分子受限结晶的研究进展,重点介绍了本课题组的工作. 研究发现,在AAO模板中,高分子结晶的过冷度大大增加,成核机理从本体的异相成核转变为均相成核或表面成核;高分子结晶结构通常表现为各向异性,动力学因素、热力学因素和界面性质均对取向结构有重要影响;受限情况下高分子结晶速率大大降低,表现出“成核控制”的动力学特征;空间受限使高分子结晶度降低,倾向于形成亚稳态晶型. 最后,对该领域尚待解决的问题进行了展望.
The crystallization of polymers under nano-confinement has attracted great attention in recent years. Anodic aluminum oxide (AAO) template with uniform nano-cylinders provides an ideal model system for constructing one-dimensional nano-confinement environments. For crystalline polymers under confinement
the nucleation mechanism
crystal orientation
crystallization kinetics
crystallinity
and polymorphic preference are much different from those of the bulk. In the present paper
the research advances on the crystallization mechanism under confinement in AAO templates are summarized with an emphasis on the research results from the authors’ group. The discussions are divided into four sections. (1)
Nucleation
. There is still a lack of a strict criterion for nucleation mechanism
especially the discrimination between homogeneous and surface nucleation. The frequently reported “multiple nucleation events” prove to result from percolation due to surface residue. The interaction between the polymer and the AAO wall plays an important role in the nucleation of poly(lactic acid). (2)
The anisotropic crystalline growth
. This section deals with the factors that govern the orientation
including the kinetic selection model
thermodynamic stability
and interfacial interactions. (3)
Crystallization kinetics
. The Avrami index decreases under confinement. First-order kinetics is observed for polymers within AAO. The Avrami index
that is remarkably smaller than 1
can be explained by the competition growth of multiple nuclei with different growth rates within one pore. (4)
Crystallinity and polymorphic preference
. The metastable crystalline modifications that are not favored in bulk become more pronounced under confinement within AAO
which provides a method to prepare functional nano-fibers. The questions to be solved on this topic are proposed.
高分子结晶成核取向结晶动力学纳米受限
Polymer crystallizationNucleationOrientationCrystallization kineticsNano-confinement
Keller A. Philos Mag , 1957 . 2 ( 21 ): 1171 - 1175 . DOI:10.1080/14786435708242746http://doi.org/10.1080/14786435708242746 .
Lodge T P. Macromolecules , 2017 . 50 ( 24 ): 9525 - 9527 . DOI:10.1021/acs.macromol.7b02507http://doi.org/10.1021/acs.macromol.7b02507 .
Samanta P, Liu C L, Nandan B, Chen H L. Crystallization of polymers in confined space. In: Thomas S, Gowd E B, Kalarikkal N, eds. Crystallization in Multiphase Polymer Systems. Kidlington Oxford (UK): Elsevier, 2018. 367 − 431
Michell R M, Blaszczyk-Lezak I, Mijangos C, Müller A J. J Polym Sci, Part B: Polym Phys , 2014 . 52 ( 18 ): 1179 - 1194 . DOI:10.1002/polb.23553http://doi.org/10.1002/polb.23553 .
Müller A L, Arnal M L, Lorenzo A T. Crystallization in nano-confined polymeric systems in handbook of polymer crystallization. In: Piorkowska E, Rutledge G C, eds. Hoboken, New Jersey(USA): John Wiley and Sons, 2013. 347 − 378
Michell R M, Müller A J. Prog Polym Sci , 2016 . 54–55 183 - 213.
Zhang Lianbin(张连斌), Wang Ke(王珂), Zhu Jintao(朱锦涛). Acta Polymerica Sinica(高分子学报) , 2017 . ( 8 ): 1261 - 1276 . DOI:10.11777/j.issn1000-3304.2017.17126http://doi.org/10.11777/j.issn1000-3304.2017.17126 .
Hamley I W. The Physics of Block Copolymers. London: Oxford University Press, 1998
Hamley I W. Developments in Block Copolymer Science and Technology. Chichester: John Wiley & Sons Ltd, 2004
Hamley I W. Adv Polym Sci , 1999 . 148 113 - 137.
Castillo R, Müller A J. Prog Polym Sci , 2009 . 34 ( 6 ): 516 - 560 . DOI:10.1016/j.progpolymsci.2009.03.002http://doi.org/10.1016/j.progpolymsci.2009.03.002 .
Zha L, Hu W B. Prog Polym Sci , 2016 . 54-55 232 - 258 . DOI:10.1016/j.progpolymsci.2015.10.010http://doi.org/10.1016/j.progpolymsci.2015.10.010 .
Nojima S, Ohguma Y, Namiki S, Ishizone T, Yamaguchi K. Macromolecules , 2008 . 41 ( 6 ): 1915 - 1918 . DOI:10.1021/ma7027903http://doi.org/10.1021/ma7027903 .
Nojima S, Ohguma Y, Kadena K, Ishizone T, Iwasaki Y, Yamaguchi K. Macromolecules , 2010 . 43 ( 8 ): 3916 - 3923 . DOI:10.1021/ma100236uhttp://doi.org/10.1021/ma100236u .
Müller A J, Balsamo V, Arnal M L, Jakob T, Schmalz H, Abetz V. Macromolecules , 2002 . 35 ( 8 ): 3048 - 3058 . DOI:10.1021/ma012026whttp://doi.org/10.1021/ma012026w .
Loo Y L, Register R A, Ryan A J. Macromolecules , 2002 . 35 ( 6 ): 2365 - 2374 . DOI:10.1021/ma011824jhttp://doi.org/10.1021/ma011824j .
Ho R M, Chung T M, Tsai J C, Kuo J C, Hsiao B S, Sics I. Macromol Rapid Commun , 2005 . 26 ( 2 ): 107 - 111 . DOI:10.1002/marc.200400467http://doi.org/10.1002/marc.200400467 .
Masuda H, Fukuda K. Science , 1995 . 268 ( 5216 ): 1466 - 1468 . DOI:10.1126/science.268.5216.1466http://doi.org/10.1126/science.268.5216.1466 .
Michell R M, Blaszczyk-Lezak I, Mijangos C, Müller A J. Polymer , 2013 . 54 ( 16 ): 4059 - 4077 . DOI:10.1016/j.polymer.2013.05.029http://doi.org/10.1016/j.polymer.2013.05.029 .
Wu H, Higaki Y, Takahara A. Prog Polym Sci , 2018 . 77 95 - 117 . DOI:10.1016/j.progpolymsci.2017.10.004http://doi.org/10.1016/j.progpolymsci.2017.10.004 .
Duran H, Steinhart M, Butt H J, Floudas G. Nano Lett , 2011 . 11 ( 4 ): 1671 - 1675 . DOI:10.1021/nl200153chttp://doi.org/10.1021/nl200153c .
Michell R M, Lorenzo A T, Müller A J, Lin M C, Chen H L, Blaszczyk-Lezak I, Martin J, Mijangos C. Macromolecules , 2012 . 45 ( 3 ): 1517 - 1528 . DOI:10.1021/ma202327fhttp://doi.org/10.1021/ma202327f .
Guan Y, Liu G M, Gao P Y, Li L, Ding G Q, Wang D J. ACS Macro Lett , 2013 . 2 ( 3 ): 181 - 184 . DOI:10.1021/mz300592vhttp://doi.org/10.1021/mz300592v .
Steinhart M, Goring P, Dernaika H, Prabhukaran M, Gosele U, Hempel E, Thurn-Albrecht T. Phys Rev Lett , 2006 . 97 ( 2 ): 027801 DOI:10.1103/PhysRevLett.97.027801http://doi.org/10.1103/PhysRevLett.97.027801 .
Suzuki Y, Duran H, Steinhart M, Butt H J, Floudas G. Soft Matter , 2013 . 9 ( 9 ): 2621 - 2628 . DOI:10.1039/c2sm27618fhttp://doi.org/10.1039/c2sm27618f .
Arnal M L, Matos M E, Morales R A, Santana O O, Müller A J. Macromol Chem Phys , 1998 . 199 2275 - 2288 . DOI:10.1002/(SICI)1521-3935(19981001)199:10<2275::AID-MACP2275>3.0.CO;2-#http://doi.org/10.1002/(SICI)1521-3935(19981001)199:10<2275::AID-MACP2275>3.0.CO;2-# .
Casas M T, Michell R M, Blaszczyk-Lezak I, Puiggalí J, Mijangos C, Lorenzo A T, Müller A J. Polymer , 2015 . 70 282 - 289 . DOI:10.1016/j.polymer.2015.06.025http://doi.org/10.1016/j.polymer.2015.06.025 .
Müller A J, Balsamo V, Arnal M L. Nucleation and crystallization in diblock and triblock copolymers. In: Block Copolymers II, Abetz V, eds. Berlin Heidelberg: Springer, 2005. 1 − 63
Shi G Y, Liu G M, Su C, Chen H M, Chen Y, Su Y L, Müller A J, Wang D J. Macromolecules , 2017 . 50 ( 22 ): 9015 - 9023 . DOI:10.1021/acs.macromol.7b02284http://doi.org/10.1021/acs.macromol.7b02284 .
Suzuki Y, Duran H, Akram W, Steinhart M, Floudas G, Butt H J. Soft Matter , 2013 . 9 ( 38 ): 9189 - 9198 . DOI:10.1039/c3sm50907ahttp://doi.org/10.1039/c3sm50907a .
Mi C, Zhou J D, Ren Z J, Li H H, Sun X L, Yan S K. Polym Chem , 2016 . 7 ( 2 ): 410 - 417 . DOI:10.1039/C5PY01532Dhttp://doi.org/10.1039/C5PY01532D .
Safari M, Maiz J, Shi G Y, Juanes D, Liu G M, Wang D J, Mijangos C, Alegría Á, Müller A J. Langmuir , 2019 . 35 ( 47 ): 15168 - 15179 . DOI:10.1021/acs.langmuir.9b02215http://doi.org/10.1021/acs.langmuir.9b02215 .
Reid D K, Ehlinger B A, Shao L, Lutkenhaus J L. J Polym Sci, Part B: Polym Phys , 2014 . 52 ( 21 ): 1412 - 1419 . DOI:10.1002/polb.23577http://doi.org/10.1002/polb.23577 .
Shin K, Woo E, Jeong Y G, Kim C, Huh J, Kim K W. Macromolecules , 2007 . 40 ( 18 ): 6617 - 6623 . DOI:10.1021/ma070994ehttp://doi.org/10.1021/ma070994e .
Li L, Liu J, Qin L, Zhang C, Sha Y, Jiang J, Wang X, Chen W, Xue G, Zhou D. Polymer , 2017 . 110 273 - 283 . DOI:10.1016/j.polymer.2016.12.081http://doi.org/10.1016/j.polymer.2016.12.081 .
Steinhart M, Senz S, Wehrspohn R B, Gosele U, Wendorff J H. Macromolecules , 2003 . 36 ( 10 ): 3646 - 3651 . DOI:10.1021/ma0260039http://doi.org/10.1021/ma0260039 .
Wu H, Wang W, Huang Y, Su Z H. Macromol Rapid Commun , 2009 . 30 ( 3 ): 194 - 198 . DOI:10.1002/marc.200800626http://doi.org/10.1002/marc.200800626 .
Dai X Y, Li H H, Ren Z J, Russell T P, Yan S K, Sun X L. Macromolecules , 2018 . 51 ( 15 ): 5732 - 5741 . DOI:10.1021/acs.macromol.8b01083http://doi.org/10.1021/acs.macromol.8b01083 .
Su C, Chen Y, Shi G Y, Li T, Liu G M, Müller A J, Wang D J. Langmuir , 2019 . 35 ( 36 ): 11799 - 11808 . DOI:10.1021/acs.langmuir.9b01968http://doi.org/10.1021/acs.langmuir.9b01968 .
Carvalho J L, Dalnoki-Veress K. Phys Rev Lett , 2010 . 105 ( 23 ): 237801 DOI:10.1103/PhysRevLett.105.237801http://doi.org/10.1103/PhysRevLett.105.237801 .
Massa M V, Dalnoki-Veress K. Phys Rev Lett , 2004 . 92 ( 25 ): 255509 DOI:10.1103/PhysRevLett.92.255509http://doi.org/10.1103/PhysRevLett.92.255509 .
Massa M V, Carvalho J L, Dalnoki-Veress K. Eur Phys J E , 2003 . 12 ( 1 ): 111 - 117 . DOI:10.1140/epje/i2003-10045-3http://doi.org/10.1140/epje/i2003-10045-3 .
Carvalho J L, Dalnoki-Veress K. Eur Phys J E , 2011 . 34 ( 1 ): 6 DOI:10.1140/epje/i2011-11006-yhttp://doi.org/10.1140/epje/i2011-11006-y .
Woo E, Huh J, Jeong Y G, Shin K. Phys Rev Lett , 2007 . 98 ( 13 ): 136103 .
Wu H, Wang W, Huang Y, Wang C, Su Z H. Macromolecules , 2008 . 41 ( 20 ): 7755 - 7758 . DOI:10.1021/ma801498bhttp://doi.org/10.1021/ma801498b .
Suzuki Y, Duran H, Steinhart M, Butt H J, Floudas G. Macromolecules , 2014 . 47 ( 5 ): 1793 - 1800 . DOI:10.1021/ma4026477http://doi.org/10.1021/ma4026477 .
Frensch H, Jungnickel B J. Colloid Polym Sci , 1989 . 267 ( 1 ): 16 - 27 . DOI:10.1007/BF01410144http://doi.org/10.1007/BF01410144 .
Arnal M L, Müller A J, Maiti P, Hikosaka M. Macromol Chem Phys , 2000 . 201 ( 17 ): 2493 - 2504 . DOI:10.1002/1521-3935(20001101)201:17<2493::AID-MACP2493>3.0.CO;2-0http://doi.org/10.1002/1521-3935(20001101)201:17<2493::AID-MACP2493>3.0.CO;2-0 .
Hu W B, Mathot V B F, Alamo R G, Gao H H, Chen X J. Adv Polym Sci , 2017 . 276 1 - 43.
Guan Y, Liu G M, Ding G Q, Yang T Y, Müller A J, Wang D J. Macromolecules , 2015 . 48 ( 8 ): 2526 - 2533 . DOI:10.1021/acs.macromol.5b00108http://doi.org/10.1021/acs.macromol.5b00108 .
Shi G Y, Guan Y, Liu G M, Müller A J, Wang D J. Macromolecules , 2019 . 52 ( 18 ): 6904 - 6912 . DOI:10.1021/acs.macromol.9b00542http://doi.org/10.1021/acs.macromol.9b00542 .
Panagopoulou A, Napolitano S. Phys Rev Lett , 2017 . 119 ( 9 ): 097801 DOI:10.1103/PhysRevLett.119.097801http://doi.org/10.1103/PhysRevLett.119.097801 .
Turnbull D, Fisher J C. J Chem Phys , 1949 . 17 ( 1 ): 71 - 73 . DOI:10.1063/1.1747055http://doi.org/10.1063/1.1747055 .
Li L, Zhou D, Huang D, Xue G. Macromolecules , 2014 . 47 ( 1 ): 297 - 303 . DOI:10.1021/ma4020017http://doi.org/10.1021/ma4020017 .
Su C, Shi G Y, Li X L, Zhang X Q, Müller A J, Wang D J, Liu G M. Macromolecules , 2018 . 51 ( 23 ): 9484 - 9493 . DOI:10.1021/acs.macromol.8b01801http://doi.org/10.1021/acs.macromol.8b01801 .
Maiz J, Martin J, Mijangos C. Langmuir , 2012 . 28 ( 33 ): 12296 - 12303 . DOI:10.1021/la302675khttp://doi.org/10.1021/la302675k .
Liu C L, Chen H L. Macromolecules , 2017 . 50 ( 2 ): 631 - 641 . DOI:10.1021/acs.macromol.6b02347http://doi.org/10.1021/acs.macromol.6b02347 .
Liu C L, Chen H L. Soft Matter , 2018 . 14 ( 26 ): 5461 - 5468 . DOI:10.1039/C8SM00795Khttp://doi.org/10.1039/C8SM00795K .
Maiz J, Schafer H, Rengarajan G T, Hartmann-Azanza B, Eickmeier H, Haase M, Mijangos C, Steinhart M. Macromolecules , 2013 . 46 ( 2 ): 403 - 412 . DOI:10.1021/ma3023876http://doi.org/10.1021/ma3023876 .
Shingne N, Geuss M, Thurn-Albrecht T, Schmidt H W, Mijangos C, Steinhart M, Martin J. J Phys Chem B , 2017 . 121 ( 32 ): 7723 - 7728 . DOI:10.1021/acs.jpcb.7b05424http://doi.org/10.1021/acs.jpcb.7b05424 .
Martín J, Iturrospe A, Cavallaro A, Arbe A, Stingelin N, Ezquerra T A, Mijangos C, Nogales A. Chem Mater , 2017 . 29 ( 8 ): 3515 - 3525 . DOI:10.1021/acs.chemmater.6b05391http://doi.org/10.1021/acs.chemmater.6b05391 .
Cheng S Z D, Chen J H. J Polym Sci Part B: Polym Phys , 1991 . 29 ( 3 ): 311 - 327 . DOI:10.1002/polb.1991.090290306http://doi.org/10.1002/polb.1991.090290306 .
Zhai X M, Wang W, Zhang G L, He B L. Macromolecules , 2006 . 39 ( 1 ): 324 - 329 . DOI:10.1021/ma051624yhttp://doi.org/10.1021/ma051624y .
Marentette J M, Brown G R. Polymer , 1998 . 39 ( 6-7 ): 1405 - 1414 . DOI:10.1016/S0032-3861(97)00554-5http://doi.org/10.1016/S0032-3861(97)00554-5 .
Zhang G L, Cao Y, Jin L X, Zheng P, Van Horn R M, Lotz B, Cheng S Z D, Wang W. Polymer , 2011 . 52 ( 4 ): 1133 - 1140 . DOI:10.1016/j.polymer.2011.01.002http://doi.org/10.1016/j.polymer.2011.01.002 .
Shcherbina M A, Chvalun S N, Ungar G. Crystallogr Rep , 2007 . 52 ( 4 ): 707 - 720 . DOI:10.1134/S1063774507040207http://doi.org/10.1134/S1063774507040207 .
Su Cui(苏萃), Shi Guangyu(施光宇), Wang Dujin(王笃金), Liu Guoming(刘国明). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 3 ): 281 - 290 . DOI:10.11777/j.issn1000-3304.2019.18218http://doi.org/10.11777/j.issn1000-3304.2019.18218 .
Ma Y, Hu W B, Hobbs J, Reiter G. Soft Matter , 2008 . 4 ( 3 ): 540 - 543 . DOI:10.1039/b715065bhttp://doi.org/10.1039/b715065b .
Kim J S, Park Y, Lee D Y, Lee J H, Park J H, Kim J K, Cho K. Adv Funct Mater , 2010 . 20 ( 4 ): 540 - 545 . DOI:10.1002/adfm.200901760http://doi.org/10.1002/adfm.200901760 .
Chen D, Zhao W, Russell T P. ACS Nano , 2012 . 6 ( 2 ): 1479 - 1485 . DOI:10.1021/nn2043548http://doi.org/10.1021/nn2043548 .
Napolitano S, Wubbenhorst M. Macromolecules , 2006 . 39 ( 18 ):5967 - 5970 . DOI:10.1021/ma061304uhttp://doi.org/10.1021/ma061304u .
Wang H P, Keum J K, Hiltner A, Baer E. Macromolecules , 2010 . 43 ( 7 ): 3359 - 3364 . DOI:10.1021/ma902780phttp://doi.org/10.1021/ma902780p .
Vanroy B, Wübbenhorst M, Napolitano S. ACS Macro Lett , 2013 . 2 ( 2 ): 168 - 172 . DOI:10.1021/mz300641xhttp://doi.org/10.1021/mz300641x .
Schultz J M. Macromolecules , 1996 . 29 ( 8 ): 3022 - 3024 . DOI:10.1021/ma950673fhttp://doi.org/10.1021/ma950673f .
Jiang S, Yu D, Ji X, An L, Jiang B. Polymer , 2000 . 41 ( 6 ): 2041 - 2046 . DOI:10.1016/S0032-3861(99)00342-0http://doi.org/10.1016/S0032-3861(99)00342-0 .
Balsamo V, Urdaneta N, Perez L, Carrizales P, Abetz V, Müller A J. Eur Polym J , 2004 . 40 ( 6 ): 1033 - 1049 . DOI:10.1016/j.eurpolymj.2004.01.009http://doi.org/10.1016/j.eurpolymj.2004.01.009 .
Loo Y L, Register R A, Ryan A J, Dee G T. Macromolecules , 2001 . 34 ( 26 ): 8968 - 8977 . DOI:10.1021/ma011521phttp://doi.org/10.1021/ma011521p .
Loo Y L, Register R A, Ryan A J. Phys Rev Lett , 2000 . 84 ( 18 ): 4120 - 4123 . DOI:10.1103/PhysRevLett.84.4120http://doi.org/10.1103/PhysRevLett.84.4120 .
Lorenzo A T, Müller A J, Lin M C, Chen H L, Jeng U S, Priftis D, Pitsikalis M, Hadjichristidis N. Macromolecules , 2009 . 42 ( 21 ): 8353 - 8364 . DOI:10.1021/ma901289thttp://doi.org/10.1021/ma901289t .
Nakagawa S, Kadena K, Ishizone T, Nojima S, Shimizu T, Yamaguchi K, Nakahama S. Macromolecules , 2012 . 45 ( 4 ): 1892 - 1900 . DOI:10.1021/ma202566fhttp://doi.org/10.1021/ma202566f .
Chung T M, Wang T C, Ho R M, Sun Y S, Ko B T. Macromolecules , 2010 . 43 ( 14 ): 6237 - 6240 . DOI:10.1021/ma100998khttp://doi.org/10.1021/ma100998k .
Nakagawa S, Ishizone T, Nojima S, Kamimura K, Yamaguchi K, Nakahama S. Macromolecules , 2015 . 48 ( 19 ): 7138 - 7145 . DOI:10.1021/acs.macromol.5b01744http://doi.org/10.1021/acs.macromol.5b01744 .
Kato R, Nakagawa S, Marubayashi H, Nojima S. Macromolecules , 2016 . 49 ( 16 ): 5955 - 5962 . DOI:10.1021/acs.macromol.6b00877http://doi.org/10.1021/acs.macromol.6b00877 .
Kawazu K, Nakagawa S, Ishizone T, Nojima S, Arai D, Yamaguchi K, Nakahama S. Macromolecules , 2017 . 50 ( 18 ): 7202 - 7210 . DOI:10.1021/acs.macromol.7b01536http://doi.org/10.1021/acs.macromol.7b01536 .
Nakagawa S, Tanaka T, Ishizone T, Nojima S, Kakiuchi Y, Yamaguchi K, Nakahama S. Macromolecules , 2013 . 46 ( 6 ): 2199 - 2205 . DOI:10.1021/ma400071fhttp://doi.org/10.1021/ma400071f .
Michell R M, Blaszczyk-Lezak I, Mijangos C, Müller A J. Macromol Symp , 2014 . 337 ( 1 ): 109 - 115 . DOI:10.1002/masy.201450313http://doi.org/10.1002/masy.201450313 .
Galante M J, Mandelkern L, Alamo R G, Lehtinen A, Paukkeri R. J Therm Anal , 1996 . 47 ( 4 ): 913 - 929 . DOI:10.1007/BF01979439http://doi.org/10.1007/BF01979439 .
García-Gutiérrez M C, Linares A, Hernandez J J, Rueda D R, Ezquerra T A, Poza P, Davies R J. Nano Lett , 2010 . 10 ( 4 ): 1472 - 1476 . DOI:10.1021/nl100429uhttp://doi.org/10.1021/nl100429u .
Shingne N, Geuss M, Hartmann-Azanza B, Steinhart M, Thurn-Albrecht T. Polymer , 2013 . 54 ( 11 ): 2737 - 2744 . DOI:10.1016/j.polymer.2013.03.034http://doi.org/10.1016/j.polymer.2013.03.034 .
Lutkenhaus J L, McEnnis K, Serghei A, Russell T P. Macromolecules , 2010 . 43 ( 8 ): 3844 - 3850 . DOI:10.1021/ma100166ahttp://doi.org/10.1021/ma100166a .
Wu H, Wang W, Yang H X, Su Z H. Macromolecules , 2007 . 40 ( 12 ): 4244 - 4249 . DOI:10.1021/ma070564ohttp://doi.org/10.1021/ma070564o .
Sun X L, Fang Q Q, Li H H, Ren Z J, Yan S K. Langmuir , 2016 . 32 ( 13 ): 3269 - 3275 . DOI:10.1021/acs.langmuir.6b00251http://doi.org/10.1021/acs.langmuir.6b00251 .
0
Views
56
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution