Due to the instant conversion of traditional photothermal conversion
solar energy could be stored for a short time
which limits its utilization in solar energy storage. Using photosensitive molecules as photothermal conversion materials
solar energy is stored in chemical bond
which becomes a common solution in this field and an important part of photothermal conversion field. As a common photothermal conversion material with simple synthesis
low cost and not easy to degrade
azobenzene (azo) can change from
trans
-structure to
cis
-structure in the light of specific wavelength and store the light energy in the chemical bond. When return to
trans
-structure under external stimulation
cis
-azo release energy in the form of heat energy
completing a light heat storage and release cycle. In view of the difficulties in the slow heat release rate and controlling the temperature of azo-based photosensitive molecules
based on the molecular structure design
4
4'-dihexylazobenzene (AZO-L6) with solid-liquid phase change function was prepared by the oxidation coupling method. The successful preparation of AZO-L6 was proved by relevant tests. Due to the low intermolecular force
the azo molecule is characterized by low melting point and fast isomerization
and when the
trans
to
cis
isomerization transition occurs
the melting point of the azo molecule greatly reduced. The process of solid-liquid phase changing realizes the storage of photothermal energy and phase change latent heat
and simultaneously releases the stored energy (231.8 kJ/kg) when returning to the
cis
-structure. We apply AZO-L6 to the wearable polymer composite fabric. It is proved that azo is fully filled into the fabric
and the isomerization of azo is hindered
while the recovery process is not affected. Under the stimulation of blue light (440 nm)
the phase change azo molecule can make the material temperature go up 0.8 °C within 60 s
and a wearable composite fabric with self-heating function is obtained
which provides research ideas for exploring multifunctional self-insulating wearable devices.
Luo W, Feng Y, Qin C, Li M, Li S P, Cao C, Feng W. Nanoscale , 2015 . 7 16214 - 16221 . DOI:10.1039/C5NR03558Ahttp://doi.org/10.1039/C5NR03558A .
Kucharski, T J, Tian Y, Akbulatov S, Boulatov R. Energy Environ Sci , 2011 . 4 ( 11 ): 4449 - 4472 . DOI:10.1039/c1ee01861bhttp://doi.org/10.1039/c1ee01861b .
Ju D, Zhao T, Dang Y, Zhang G, Hu X, Cui D. J Mater Chem A , 2017 . 5 ( 45 ): 24014 DOI:10.1039/C7TA90247Fhttp://doi.org/10.1039/C7TA90247F .
Wa ng, Z, Yang C, Lin T, Yin H, Chen P, Wan D, Jiang M. Energy Environ Sci , 2013 . 6 ( 10 ): 3007 - 3014 . DOI:10.1039/c3ee41817khttp://doi.org/10.1039/c3ee41817k .
Sharma A, Tyagi V V, Chen C R, Buddhi D. Renew Sust Energ Rev , 2009 . 13 ( 2 ): 318 - 345 . DOI:10.1016/j.rser.2007.10.005http://doi.org/10.1016/j.rser.2007.10.005 .
Dong L, Feng Y, Wang L, Feng W. Chem Soc Rev , 2018 . 47 7339 - 7368 . DOI:10.1039/C8CS00470Fhttp://doi.org/10.1039/C8CS00470F .
Neale N R. Nat Chem , 2014 . 6 ( 5 ): 385 - 386 . DOI:10.1038/nchem.1933http://doi.org/10.1038/nchem.1933 .
Kucharski T J, Ferralis N, Kolpak A M, Zheng J O, Nocera D G, Grossman J C. Nat Chem , 2014 . 6 ( 5 ): 441 DOI:10.1038/nchem.1918http://doi.org/10.1038/nchem.1918 .
Nazir H, Batool M, Osorio F J B, Isaza-Ruiz M, Xu X, Vignarooban K, Phelan P, Inamuddin K A. Int J Heat Mass Transf , 2019 . 129 491 - 523 . DOI:10.1016/j.ijheatmasstransfer.2018.09.126http://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126 .
Kolpak A M, Grossman J C. J Chem Phys , 2013 . 138 ( 3 ): 034303 DOI:10.1063/1.4773306http://doi.org/10.1063/1.4773306 .
Dreos A, Börjesson K, Wang Z, Roffey A, Norwood Z, Kushnir D, Moth-Poulsen K. Energy Environ Sci , 2017 . 10 ( 3 ): 728 - 734 . DOI:10.1039/C6EE01952Hhttp://doi.org/10.1039/C6EE01952H .
Huang Z, Li L, Wang Y, Zhang C, Liu T. Compos Commun , 2018 . 8 83 - 91 . DOI:10.1016/j.coco.2017.11.005http://doi.org/10.1016/j.coco.2017.11.005 .
Zhang Z, Qu J, Feng Y, Feng W. Compos Commun , 2018 . 9 33 - 41 . DOI:10.1016/j.coco.2018.04.009http://doi.org/10.1016/j.coco.2018.04.009 .
Strubbe D A, Grossman J C. J Phys Condens Matter , 2018 . 31 ( 3 ): 034002 .
Kolpak A M, Grossman J C. Nano Lett , 2011 . 11 3156 - 3162 . DOI:10.1021/nl201357nhttp://doi.org/10.1021/nl201357n .
Saydjari A K, Weis P, Wu S.. Adv Energy Mater , 2017 . 7 ( 3 ): 1601622 DOI:10.1002/aenm.201601622http://doi.org/10.1002/aenm.201601622 .
Yang W, Feng Y, Si Q, Yan Q, Long P, Dong L, Feng W. J Mater Chem A , 2019 . 7 ( 1 ): 97 - 106 . DOI:10.1039/C8TA05333Bhttp://doi.org/10.1039/C8TA05333B .
Cho E N, Zhitomirsky D, Han G G, Liu Y, Grossman J C. ACS Appl Mater Interfaces , 2017 . 9 ( 10 ): 8679 - 8687 . DOI:10.1021/acsami.6b15018http://doi.org/10.1021/acsami.6b15018 .
Kim S J, We J H, Cho B J. Energy Environ Sci , 2014 . 7 ( 6 ): 1959 - 1965 . DOI:10.1039/c4ee00242chttp://doi.org/10.1039/c4ee00242c .
Han J, Du G, Gao W, Bai H. Adv Funct Mater , 2019 . 29 ( 13 ): 1900412 DOI:10.1002/adfm.201900412http://doi.org/10.1002/adfm.201900412 .
Samanta S, Beharry A A, Sadovski O, McCormick T M, Babalhavaeji A, Tropepe V, Woolley G A. J Am Chem Soc , 2013 . 135 ( 26 ): 9777 - 9784 . DOI:10.1021/ja402220thttp://doi.org/10.1021/ja402220t .
Synthesis and Self-assembly of Asymmetric Molecular Brushes with Azobenzene-containing Side Chains
Supramolecular Chiroptical Switches Based on Azobenzene Polymers
Pore-formation through Controlling Noncovalent Interactions in Polyelectrolyte Film
Polymers for Photoinduced Reversible Solid-to-Liquid Transitions
Synthesis of Main-chain Azobenzene Liquid Crystalline Copolyester with Side Hydroxyl Group and Its Photoresponsive Behavior
Related Author
No data
Related Institution
Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology
Institute of Chemistry, Chinese Academy of Sciences
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University
MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer science and Engineering, University of Science and Technology of China