Study on Crystallization Kinetics of Crosslinked Poly(ε-caprolactone)/Styrene-acrylonitrile Copolymer Blends Prepared through Irradiation by Electron Beam
返回论文页
Research Article|更新时间:2021-01-26
|
Study on Crystallization Kinetics of Crosslinked Poly(ε-caprolactone)/Styrene-acrylonitrile Copolymer Blends Prepared through Irradiation by Electron Beam
Jia Wang, Cui Xu, Juan Zhang, Xue-hui Wang, Zhi-gang Wang. Study on Crystallization Kinetics of Crosslinked Poly(ε-caprolactone)/Styrene-acrylonitrile Copolymer Blends Prepared through Irradiation by Electron Beam. [J]. Acta Polymerica Sinica 52(2):214-222(2021)
DOI:
Jia Wang, Cui Xu, Juan Zhang, Xue-hui Wang, Zhi-gang Wang. Study on Crystallization Kinetics of Crosslinked Poly(ε-caprolactone)/Styrene-acrylonitrile Copolymer Blends Prepared through Irradiation by Electron Beam. [J]. Acta Polymerica Sinica 52(2):214-222(2021) DOI: 10.11777/j.issn1000-3304.2020.20168.
Study on Crystallization Kinetics of Crosslinked Poly(ε-caprolactone)/Styrene-acrylonitrile Copolymer Blends Prepared through Irradiation by Electron Beam
SAN (styrene-acrylonitrile copolymer) and TAIC (triallyl isocyanurate) were melt blended
and the blends were then subjected to different doses of electron beam irradiation to prepare three series of crosslinked PCL and PCL/SAN blends with different gel contents. The crosslinked PCL/SAN blends were observed by a phase-contrast optical microscope (PCOM)
which disclosed that phase separation did not occur
indicating that PCL and SAN components were miscible. Differential scanning calorimetry (DSC) was applied to study isothermal crystallization kinetics of crosslinked PCL and PCL/SAN blends. It was found that for the samples with close crosslinking degrees
the crystallization kinetics of the samples became significantly slower with increasing SAN content. When the SAN contents in the blends were the same
the crystallization rate became slower as the degree of crosslinking increased. For the blends with close degrees of crosslinking
the linear portion and the crosslinked portion were separated from the crosslinked blends
and the study on their respective crystallization kinetics by using DSC and polarized light microscope (POM) revealed that it was the incorporated SAN component rather than the crosslinked network that mainly contributed to the slowdown of crystallization rate of PCL in the crosslinked blends. Furthermore
the non-isothermal crystallization behaviors of the crosslinked blends during the cooling process verified the above conclusion.
Cao A, Okamura T, Ishiguro C, Nakayama K, Inoue Y, Masuda T. Polymer , 2002 . 43 ( 3 ): 671 - 679 . DOI:10.1016/S0032-3861(01)00658-9http://doi.org/10.1016/S0032-3861(01)00658-9 .
Mamun A, Bazuin C G, Prud’homme R E. Macromolecules , 2015 . 48 ( 5 ): 1412 - 1417 . DOI:10.1021/ma502188thttp://doi.org/10.1021/ma502188t .
Iregui Á, Otaegi I, Arandia I, Martin M D, Müller A J, Irusta L, González A. Macromolecules , 2020 . 53 ( 4 ): 1368 - 1379 . DOI:10.1021/acs.macromol.9b02474http://doi.org/10.1021/acs.macromol.9b02474 .
Dal Poggetto G, Troise S S, Conte C, Marchetti R, Moret F, Iadonisi A, Silipo A, Lanzetta R, Malinconico M, Quaglia F, Laurienzo P. Polym Chem , 2020 . 11 ( 23 ): 3892 - 3903 . DOI:10.1039/D0PY00158Ahttp://doi.org/10.1039/D0PY00158A .
Madbouly S A, Abdou N Y, Mansour A A. Macromol Chem Phys , 2006 . 207 ( 11 ): 978 - 986 . DOI:10.1002/macp.200600084http://doi.org/10.1002/macp.200600084 .
Li L, Zhang S J, Xue M L, Sun X L, Ren Z J, Li H H, Huang Q G, Yan S K. Langmuir , 2019 . 35 ( 34 ): 11167 - 11174 . DOI:10.1021/acs.langmuir.9b01814http://doi.org/10.1021/acs.langmuir.9b01814 .
Fenni S E, Wang J, Haddaoui N, Favis B D, Muller A J, Cavallo D. Macromolecules , 2020 . 53 ( 5 ): 1726 - 1735 . DOI:10.1021/acs.macromol.9b02295http://doi.org/10.1021/acs.macromol.9b02295 .
Parameswaranpillai J, Sidhardhan S K, Jose S, Hameed N, Salim N V, Siengchin S, Pionteck J, Magueresse A, Grohens Y. Ind Eng Chem Res , 2016 . 55 ( 38 ): 10055 - 10064 . DOI:10.1021/acs.iecr.6b01713http://doi.org/10.1021/acs.iecr.6b01713 .
Shieh Y T, Yang H S, Chen H L, Lin T L. Polym J , 2005 . 37 ( 12 ): 932 - 938 . DOI:10.1295/polymj.37.932http://doi.org/10.1295/polymj.37.932 .
Qian J, Xiao Z L, Dong L, Tang D H, Li M J, Yang Q, Huang Y J, Liao X. J Appl Polym Sci , 2016 . 133 44157 .
Wang Shuyun(王淑云), Meng Yanfeng(蒙延峰), Huo Hong(霍红), Li Hongfei(李宏飞), Jiang Shichun(蒋世春),An Lijia(安立佳), Jiang Bingzheng(姜炳政). Acta Polymerica Sinica(高分子学报) , 2005 . ( 2 ): 203 - 206.
Rim P B, Runt J P. Macromolecules , 1983 . 16 ( 5 ): 762 - 768 . DOI:10.1021/ma00239a012http://doi.org/10.1021/ma00239a012 .
Wang Z G, Wang X H, Yu D H, Jiang B Z. Polymer , 1997 . 38 ( 23 ): 5897 - 5901 . DOI:10.1016/S0032-3861(97)00225-5http://doi.org/10.1016/S0032-3861(97)00225-5 .
Toda A, Taguchi K, Kajioka H. Polymer , 2012 . 53 ( 8 ): 1765 - 1771 . DOI:10.1016/j.polymer.2012.02.030http://doi.org/10.1016/j.polymer.2012.02.030 .
Melt Memory Effect in Crystallization of 1-Butene/4-(3-Butenyl)toluene Copolymers
Optical Inversion Characteristics of PA56 Spherulites
Research Progress on Polymer Crystallization Confined within Nano-porous AAO Templates
Preparation and Characterization of Functionalized POSS Derivatives and Multi-arm Star-shaped Polyesters
Influence of Shear Flow on the Crystallization Kinetics of Isotactic Polypropylene in Nucleation and Crystal Growth Processes
Related Author
No data
Related Institution
School of Materials Science and Engineering, Tianjin University
College of Materials Science and Engineering, Beijing University of Chemical Technology
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences
University of Chinese Academy of Sciences
Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University