Hang Xie, Jiao-jiao Li, Xiao-yong Wang, Bin Wu, Ru Xia, Peng Chen, Jia-sheng Qian. Simulation Study on the Interface Thermal Resistance of Graphene/Bio-nylon Composites. [J]. Acta Polymerica Sinica 52(4):399-405(2021)
DOI:
Hang Xie, Jiao-jiao Li, Xiao-yong Wang, Bin Wu, Ru Xia, Peng Chen, Jia-sheng Qian. Simulation Study on the Interface Thermal Resistance of Graphene/Bio-nylon Composites. [J]. Acta Polymerica Sinica 52(4):399-405(2021) DOI: 10.11777/j.issn1000-3304.2020.20225.
Simulation Study on the Interface Thermal Resistance of Graphene/Bio-nylon Composites
Bio-based nylon (PA56) is derived from natural products
which is expected to replace other synthetic nylon products. In order to prepare thermal conductive composites materials based on PA56
molecular dynamics simulation technology is used to explore the interface thermal resistance of graphene/PA56 composite materials. Firstly
the model and simulation parameters for simulated PA56 are testified by comparing physical properties
such as density
temperature of glass transition and thermal conductivity from simulation with those from experiment. There is a good accordance between simulation data and experimental data. And then
the simulated composites of graphene/PA56 is constructed. Various surface modification technologies onto graphene to depress interface thermal resistance between graphene and PA56 matrix are checked in detail. Typically
in cases surface grafted chains onto graphene those may form hydrogen bond with PA56 segments
are more effective to depress interface thermal resistance in the composites than other technologies. Experimentally surface grafting polymer chains onto graphene are expensive and inefficient
compared with that of chemical groups
though. To make a commercially viable surface modification technique
a diblock copolymer PA4-
b
-PA56 is theoretically designed as macromolecular interfacial modifiers. In the composites
the PA4 segments of diblock copolymer form hydrogen bonds with chemical groups onto modified graphene
and PA56 segments readily mix with matrix polymer chains. As a result
interface thermal resistance between graphene and PA56 matrix are found to be effectively depressed by such macromolecular interfacial modifiers. Such methodology opens a new routine to improve thermal transition among composites. Simulation exploration may help experimentally fabricate thermal conductive graphene/PA56 materials.
关键词
生物基尼龙石墨烯界面热阻氢键
Keywords
Bio-based nylonGrapheneInterface thermal resistanceHydrogen bond
references
Wang Y, Kang H L, Wang R, Liu R G, Hao X M . J Appl Polym Sci , 2018 . 135 ( 26 ): 1 - 13.
Wang Z L . Adv Mater , 2012 . 24 ( 2 ): 280 - 285 . DOI:10.1002/adma.201102958http://doi.org/10.1002/adma.201102958 .
Han C, Li Z, Dou S . Chin Sci Bull , 2014 . 59 ( 18 ): 2073 - 2091 . DOI:10.1007/s11434-014-0237-2http://doi.org/10.1007/s11434-014-0237-2 .
Gurlo A, Ionescu E, Riedel R, Clarke D R, Green D J . J Am Ceram Soc , 2016 . 99 ( 1 ): 281 - 285 . DOI:10.1111/jace.13947http://doi.org/10.1111/jace.13947 .
Gharagozloo-Hubmann K, Boden A, Czempiel G J F, Firkowska I, Reich S . Appl Phys Lett , 2013 . 102 ( 21 ): 1 - 4.
Huang X Y, Zhi C Y, Jiang P K, Golberg D, Bando Y, Tanaka T . Adv Funct Mater , 2013 . 23 ( 14 ): 1824 - 1831 . DOI:10.1002/adfm.201201824http://doi.org/10.1002/adfm.201201824 .
Huang X Y, Wang S, Zhu M, Yang K, Jiang P K, Bando Y, Golberg D, Zhi C Y . J Nanotechnol , 2015 . 26 ( 1 ): 1 - 10.
Shtein M, Nadiv R, Buzaglo M, Kahil K, Regev O . Chem Mater , 2015 . 27 ( 6 ): 2100 - 2106 . DOI:10.1021/cm504550ehttp://doi.org/10.1021/cm504550e .
Gaska K, Kmita G, Rybak A, Sekula R, Goc K, Kapusta C . J Mater Sci , 2015 . 50 ( 6 ): 2510 - 2516 . DOI:10.1007/s10853-014-8809-8http://doi.org/10.1007/s10853-014-8809-8 .
Yuan C, Duan B, Li L, Xie B, Huang M, Luo X . ACS Appl Mater Interfaces , 2015 . 7 ( 23 ): 13000 - 13006 . DOI:10.1021/acsami.5b03007http://doi.org/10.1021/acsami.5b03007 .
Kim K, Kim J . Int J Therm Sci , 2016 . 100 29 - 36 . DOI:10.1016/j.ijthermalsci.2015.09.013http://doi.org/10.1016/j.ijthermalsci.2015.09.013 .
Lim H S, Oh J W, Kim S Y, Yoo M J, Park S D, Lee W S . Chem Mater , 2013 . 25 ( 16 ): 3315 - 3319 . DOI:10.1021/cm401488ahttp://doi.org/10.1021/cm401488a .
Wang H, Tazebay A S, Yang G, Lin H, Choi W, Yu C . Carbon , 2016 . 106 152 - 157.
Pan G, Yao Y, Zeng X, Sun J, Hu J, Sun R, Xu J B, Wong C P . ACS Appl Mater Interfaces , 2017 . 9 ( 38 ): 33001 - 33010 . DOI:10.1021/acsami.7b10115http://doi.org/10.1021/acsami.7b10115 .
Zabihi Z, Araghi H . Phys Lett A , 2016 . 380 ( 45 ): 3828 - 3831 . DOI:10.1016/j.physleta.2016.09.028http://doi.org/10.1016/j.physleta.2016.09.028 .
Construction of Poly(lipoic acid)-based Functional Hydrogels for Infected Skin Wound Healing
Self-assembly of Supramolecular Silicon-containing Block Copolymers Based on Hydrogen Bonding Interaction
Synthesis and Properties of Polyisobutylene-based Thermoplastic Elastomer
Preparation and Properties Modulation of Multi-component Polymer Complex Fibers
The Controllable Surface Structure and Oil-Water Separation Performance of Reinforced Poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) Hollow Fiber Membranes
Related Author
No data
Related Institution
School of Chemistry, Xi'an Jiaotong University
College of Polymer Science and Engineering, Sichuan University
State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Material Science and Engineering, Donghua University
State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tianjin Polytechnic University