Can Chen, Hui-tao Yu, Yi-yu Feng, Wei Feng. Polymer Composite Material with both Thermal Conduction and Self-healing Functions. [J]. Acta Polymerica Sinica 52(3):272-280(2021)
DOI:
Can Chen, Hui-tao Yu, Yi-yu Feng, Wei Feng. Polymer Composite Material with both Thermal Conduction and Self-healing Functions. [J]. Acta Polymerica Sinica 52(3):272-280(2021) DOI: 10.11777/j.issn1000-3304.2020.20229.
Polymer Composite Material with both Thermal Conduction and Self-healing Functions
In order to obtain polymer composites with rapid self-healing function of thermal conductivity and mechanical strength degradation
a self-healing polymer reinforced by thermally conductive fillers was proposed. In this work
the bis(3-aminopropyl) terminated polydimethylsiloxane (H
2
N-PDMS-NH
2
) was modified by introducing 6-methyl-4-pyrimidinone (UPy) as end groups
which was based on the reversible cleavage and reconfigurability of the quadruple hydrogen bonds between the UPy groups. The results of Fourier infrared spectroscopy (FTIR)
mechanical tensile tests and scanning electron microscopy (SEM) showed that the UPy double-terminated polydimethylsiloxane (UPy-PDMS-UPy) had good self-healing properties
and the healing efficiency of mechanical strength reached 86.6% after healing at 60 °C for 20 h. Subsequently
thermally conductive composite material with self-healing function was prepared by filling hydroxylated boron nitride (mBN) into the UPy-PDMS-UPy. It was found that mBN could enhance the tensile strength of the composite material but reduce the toughness
and had positive and negative effects on thermal conductivity and self-selfing function
respectively. When the mBN content was 30 wt%
the tensile strength healing efficiency reached 82.0% after 40 h at 60 °C. And the thermal conductivity reached as high as 2.579 W·m
−1
·K
−1
but fell with further increase of mBN content due to the aggregations and holes. Therefore
mBN-30/UPy-PDMS-UPy was involved in the following measurements. Infrared thermal imaging camera showed that the upper surface temperature of mBN-30/UPy-PDMS-UPy was close to the initial temperature after healing for 10 h
which showed good self-healing function of heat transfer
and the relevant self-healing machnism was discussed in the end. The design achieved the self-healing function of both mechanical strength and thermal conductivity for composite material
which provided a great guide for the design of self-healing thermal interface materials.
Feng W, Qin M, Feng Y . Carbon , 2016 . 109 575 - 597 . DOI:10.1016/j.carbon.2016.08.059http://doi.org/10.1016/j.carbon.2016.08.059 .
Si J, Yang H . Mater Chem Phys , 2011 . 128 ( 3 ): 519 - 524 . DOI:10.1016/j.matchemphys.2011.03.039http://doi.org/10.1016/j.matchemphys.2011.03.039 .
Teh P L, Jaafar M, Akil H M, Seetharamu K N, Wagiman A N R, Beh K S . Polym Adv Technol , 2008 . 19 ( 4 ): 308 - 315 . DOI:10.1002/pat.1014http://doi.org/10.1002/pat.1014 .
Balandin A A . Nat Mater , 2011 . 10 ( 8 ): 569 - 581 . DOI:10.1038/nmat3064http://doi.org/10.1038/nmat3064 .
Ji T, Feng Y, Qin M, Feng W . Compos Part A , 2016 . 91 351 - 369 . DOI:10.1016/j.compositesa.2016.10.009http://doi.org/10.1016/j.compositesa.2016.10.009 .
Lv P, Tan X W, Yu K H, Zheng R L, Zheng J J, Wei W . Carbon , 2016 . 99 222 - 228 . DOI:10.1016/j.carbon.2015.12.026http://doi.org/10.1016/j.carbon.2015.12.026 .
Wang M, Chen H, Lin W, Li Z, Li Q, Chen M, Meng F, Xing Y, Yao Y, Wong C P, Li Q . ACS Appl Mater Interfaces , 2014 . 6 ( 1 ): 539 - 544 . DOI:10.1021/am404594mhttp://doi.org/10.1021/am404594m .
Chen H, Ginzburg V V, Yang J, Yang Y, Liu W, Huang Y, Du L . Prog Polym Sci , 2016 . 59 41 - 85 . DOI:10.1016/j.progpolymsci.2016.03.001http://doi.org/10.1016/j.progpolymsci.2016.03.001 .
Zhang F, Feng Y, Qin M, Gao L, Li Z, Zhao F, Zhang Z, Lv F, Feng W . Adv Funct Mater , 2019 . 29 ( 25 ): 1901383 DOI:10.1002/adfm.201901383http://doi.org/10.1002/adfm.201901383 .
Bartlett M D, Kazem N, Powell-Palm M J, Huang X, Sun W, Malen J A, Majidi C . Proc Natl Acad Sci U S A , 2017 . 114 ( 9 ): 2143 - 2148 . DOI:10.1073/pnas.1616377114http://doi.org/10.1073/pnas.1616377114 .
Cui S, Jiang F, Song N, Shi L, Ding P . ACS Appl Mater Interfaces , 2019 .11 ( 33 ): 30352 - 30359 . DOI:10.1021/acsami.9b10538http://doi.org/10.1021/acsami.9b10538 .
Zhang Y, Qi Y, Zhang Z . J Polym Res , 2015 . 22 ( 5 ): 94 DOI:10.1007/s10965-015-0744-0http://doi.org/10.1007/s10965-015-0744-0 .
Lai J C, Mei J F, Jia X Y, Li C H, You X Z, Bao Z . Adv Mater , 2016 . 28 ( 37 ): 8277 - 8282 . DOI:10.1002/adma.201602332http://doi.org/10.1002/adma.201602332 .
Lai J C, Jia X Y, Wang D P, Deng Y B, Zheng P, Li C H, Zuo J L, Bao Z . Nat Commun , 2019 . 10 ( 1 ): 1164 DOI:10.1038/s41467-019-09130-zhttp://doi.org/10.1038/s41467-019-09130-z .
Yang X, Guo Y, Luo X, Zheng N, Ma T, Tan J, Li C, Zhang Q, Gu J . Compos Sci Technol , 2018 . 164 59 - 64 . DOI:10.1016/j.compscitech.2018.05.038http://doi.org/10.1016/j.compscitech.2018.05.038 .
Zhao L, Shi X, Yin Y, Jiang B, Huang Y . Compos Sci Technol , 2020 . 186 107919 DOI:10.1016/j.compscitech.2019.107919http://doi.org/10.1016/j.compscitech.2019.107919 .
Hu J, Mo R, Jiang X, Sheng X, Zhang X . Polymer , 2019 . 183 121912 DOI:10.1016/j.polymer.2019.121912http://doi.org/10.1016/j.polymer.2019.121912 .
Wang Hongqin(王洪芹), Su Zhiming(苏治名), Li Chenghui(李承辉) . Chinese Science Bulletin-Chinese(科学通报) , 2019 . 65 ( 1 ): 37 - 52.
Li C H, Wang C, Keplinger C, Zuo J L, Jin L, Sun Y, Zheng P, Cao Y, Lissel F, Linder C, You X Z, Bao Z . Nat Chem , 2016 . 8 ( 6 ): 618 - 624 . DOI:10.1038/nchem.2492http://doi.org/10.1038/nchem.2492 .
Liu Y, Yuan J, Zhang K, Guo K, Yuan L, Wu Y, Gao C . Prog Org Coat , 2020 . 144 105661 DOI:10.1016/j.porgcoat.2020.105661http://doi.org/10.1016/j.porgcoat.2020.105661 .
Si Q, Feng Y, Yang W, Fu L, Yan Q, Dong L, Long P, Feng W . ACS Appl Mater Interfaces , 2018 . 10 ( 35 ): 29909 - 29917 . DOI:10.1021/acsami.8b08025http://doi.org/10.1021/acsami.8b08025 .
Yu X, Li Y, Wang X, Si Y, Yu J, Ding B . ACS Appl Mater Interfaces , 2020 . 12 ( 28 ): 32078 - 32089 . DOI:10.1021/acsami.0c04486http://doi.org/10.1021/acsami.0c04486 .
Guiney L M, Mansukhani N D, Jakus A E, Wallace S G, Shah R N, Hersam M C . Nano Lett , 2018 . 18 ( 6 ): 3488 - 3493 . DOI:10.1021/acs.nanolett.8b00555http://doi.org/10.1021/acs.nanolett.8b00555 .
Zhang D, Zha J, Li W, Li C, Wang S, Wen Y, Dang Z . Compos Sci Technol , 2018 . 156 1 - 7 . DOI:10.1016/j.compscitech.2017.12.008http://doi.org/10.1016/j.compscitech.2017.12.008 .
Preparation and Application of Lignin Grafted Natural Rubber Initiated by CaCl2/H2O2
Self-assembly of Supramolecular Silicon-containing Block Copolymers Based on Hydrogen Bonding Interaction
Research on Surface Mechanical Properties of Polydimethylsiloxane Stamp Microstructures in Self-diffusion Process
Intrinsic Self-healing Polysiloxane Materials: From Single Dynamic Crosslinked Network to Multiple Dynamic Crosslinked Networks
Related Author
No data
Related Institution
Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology
College of Polymer Science and Engineering, Sichuan University
Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences
School of Mechanical Engineering, Jiangnan University
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer Based Composites of Guangdong Province, School of Chemistry, Sun Yat-Sen University