浏览全部资源
扫码关注微信
大连理工大学高分子材料系 大连 116024
Jin-yan Wang, E-mail: wangjinyan@dlut.edu.cn
Published:20 September 2021,
Published Online:21 July 2021,
Received:01 February 2021,
Revised:18 February 2021,
扫 描 看 全 文
秦凤鸣,李香玉,王锦艳等.有机硅改性聚氨酯/纳米SiO2复合超疏水涂层的制备[J].高分子学报,2021,52(09):1165-1173.
Qin Feng-ming,Li Xiang-yu,Wang Jin-yan,et al.Preparation of Silicone Modified Polyurethane/Nano-SiO2 Composite Superhydrophobic Coating[J].ACTA POLYMERICA SINICA,2021,52(09):1165-1173.
秦凤鸣,李香玉,王锦艳等.有机硅改性聚氨酯/纳米SiO2复合超疏水涂层的制备[J].高分子学报,2021,52(09):1165-1173. DOI: 10.11777/j.issn1000-3304.2021.21038.
Qin Feng-ming,Li Xiang-yu,Wang Jin-yan,et al.Preparation of Silicone Modified Polyurethane/Nano-SiO2 Composite Superhydrophobic Coating[J].ACTA POLYMERICA SINICA,2021,52(09):1165-1173. DOI: 10.11777/j.issn1000-3304.2021.21038.
以4
4'-二苯基甲烷二异氰酸酯(MDI)、聚四氢呋喃醚二醇(PTMEG)、羟基封端的聚二甲基硅氧烷(HO-PDMS)、1
4-丁二醇(BDO)为原料,合成了有机硅改性的聚氨酯溶液,通过核磁共振、红外光谱技术对其结构进行表征,并研究了羟基硅油加入量对聚氨酯热稳定性、疏水性的影响. 以有机硅改性的聚氨酯溶液为基体、含氟硅烷偶联剂改性的纳米二氧化硅颗粒为填料,喷涂制备超疏水涂层,研究了填料添加量对复合涂层疏水性的影响. 结果表明:当硅油加入量为9 wt%,填料加入量为60 wt%时,复合涂层性能最优,水接触角为153.3°,滞后角为6.3°. 经过200 ℃加热1 h后,仍然具有大于150°的水接触角. 对复合涂层进行磨损实验与防冰测试,结果表明:该复合涂层在磨损过程中,在基底暴露之前,整个涂层基体都具有超疏水性;并且该涂层能有效降低结冰温度,延长结冰时间,具有良好的防冰性能.
A silicone modified polyurethane (SiPU) was synthesized with 4
4'-diphenylmethane diisocyanate (MDI)
polytetrahydrofuran ether glycol (PTMEG)
hydroxyl terminated polydimethylsiloxane (HO-PDMS)
1
4-butanediol (BDO) as raw materials and its structure was characterized by hydrogen nuclear magnetic resonance (
1
H-NMR) and Fourier transform infrared spectroscopy (FTIR). The effect of HO-PDMS content on the thermal stability and hydrophobicity of polyurethane was investigated by thermogravimetric analysis (TGA) and water contact angle (WCA) test. The results showed that the SiPU coating had the best performances when the content of silicone was 9 wt%. Then the superhydrophobic coating was easily prepared by spraying SiPU as the matrix and fluorosilane modified SiO
2
nano particles (FAS-SiO
2
NPs) with different sizes (25 and 15 nm) as fillers. The effects of FAS-SiO
2
NPs size and content on the hydrophobicity of the composite coating were also studied by WCA test. It was proven that the composite coating possessed the best performances when the mass ratio and content of FAS-SiO
2
NPs were 4:1 and 60 wt%
respectively. The WCA and hysteresis angle were 153.3° and 6.3°
respectively. After heated at 200 °C for 1 h
the composite coating was still superhydrophobic. Moreover
the abrasion test showed that the composite coating was always superhydrophobic before the aluminum alloy substrate was exposed. The anti-icing test result showed that the composite coating decreased the freezing temperature effectively and delayed freezing time obviously
compared with uncoated surface and coating without fillers. Considering that the composite superhydrophobic coating can be prepared easily in large scale by spaying and has great anti-icing performance
it holds great potential in the fields of superhydrophobicity and anti-icing.
超疏水聚氨酯涂层防冰复合涂层
SuperhydrophobicPolyurethane coatingAnti-icingComposite coating
Parent O, Ilinca A. Cold Reg Sci Technol, 2011, 65(1): 88-96. doi:10.1016/j.coldregions.2010.01.005http://dx.doi.org/10.1016/j.coldregions.2010.01.005
Wang Z. Energ Buildings, 2017, 140: 42-49. doi:10.1016/j.enbuild.2017.01.072http://dx.doi.org/10.1016/j.enbuild.2017.01.072
Pouryoussefi S G, Mirzaei M, Nazemi M M, Fouladi M, Doostmahmoudi A. Chin J Aeronaut, 2016, 29(3): 585-595. doi:10.1016/j.cja.2016.03.002http://dx.doi.org/10.1016/j.cja.2016.03.002
Lynch F T, Khodadoust A. Prog Aerosp Sci, 2001, 37(8): 669-767. doi:10.1016/s0376-0421(01)00018-5http://dx.doi.org/10.1016/s0376-0421(01)00018-5
Thomas S K, Cassoni R P, MacArthur C D. J Aircr, 1996, 33(5): 841-854. doi:10.2514/3.47027http://dx.doi.org/10.2514/3.47027
Mohiley A, Franzaring J, Calvo O C, Fangmeier A. Environ Sci Pollut Res, 2015, 22(17): 13094-13101. doi:10.1007/s11356-015-4358-1http://dx.doi.org/10.1007/s11356-015-4358-1
Zhou Li(周莉), Xu Haojun(徐浩军), Gong Shengke(龚胜科), Li Dawei(李大伟). China Safety Science Journal(中国安全科学学报), 2010, 20(6): 105-110. doi:10.3969/j.issn.1003-3033.2010.06.018http://dx.doi.org/10.3969/j.issn.1003-3033.2010.06.018
Bhushan B. Phil Trans R Soc A, 2009, 367(1893): 1445-1486. doi:10.1098/rsta.2009.0011http://dx.doi.org/10.1098/rsta.2009.0011
Guo Z, Liu W, Su B L. J Colloid Interface Sci, 2011, 353(2): 335-355. doi:10.1016/j.jcis.2010.08.047http://dx.doi.org/10.1016/j.jcis.2010.08.047
Wang S, Jiang L. Adv Mater, 2007, 19(21): 3423-3424. doi:10.1002/adma.200700934http://dx.doi.org/10.1002/adma.200700934
Lin Y, Chen H, Wang G, Liu A. Coatings, 2018, 8(6): 208. doi:10.3390/coatings8060208http://dx.doi.org/10.3390/coatings8060208
Jiang Lei(江雷). Chemical Industry and Engineering Progress(化工进展), 2003, 22(12): 1258-1264. doi:JournalArticle/5af10a7ac095d718d8de2bf7http://dx.doi.org/JournalArticle/5af10a7ac095d718d8de2bf7
Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y. Langmuir, 1999, 15(13): 4321-4323. doi:10.1021/la981727shttp://dx.doi.org/10.1021/la981727s
Murase H, Fujibayashi T. Prog Org Coat, 1997, 31(1-2): 97-104. doi:10.1016/s0300-9440(97)00023-4http://dx.doi.org/10.1016/s0300-9440(97)00023-4
Weng Bin(翁斌), Shang Dan(商丹), Jin Lujiang(金鹿江), Sun Xiaoying(孙小英), Hang Jianzhong(杭建忠). Acta Polymerica Sinina(高分子学报), 2017, (6): 990-998. doi:10.11777/j.issn1000-3304.2017.16330http://dx.doi.org/10.11777/j.issn1000-3304.2017.16330
Ji X, Wang H, Ma X, Hou C, Ma G. RSC Adv, 2017, 7(54): 34086-34095. doi:10.1039/c7ra05738ehttp://dx.doi.org/10.1039/c7ra05738e
Wang L, Gong Q, Zhan S, Jiang L, Zheng Y. Adv Mater, 2016, 28(35): 7729-7735. doi:10.1002/adma.201602480http://dx.doi.org/10.1002/adma.201602480
Murase H, Nanishi K, Kogure H, Fujibayashi T, Tamura K, Haruta N. J Appl Polym Sci, 1994, 54(13): 2051-2062. doi:10.1002/app.1994.070541307http://dx.doi.org/10.1002/app.1994.070541307
Li X, Li Y, Ren L, Zhu K, Zhao Y, Yuan X. Thin Solid Films, 2017, 639: 113-122. doi:10.1016/j.tsf.2017.08.034http://dx.doi.org/10.1016/j.tsf.2017.08.034
Gao L, McCarthy T J. Langmuir, 2006, 22(7): 2966-2967. doi:10.1021/la0532149http://dx.doi.org/10.1021/la0532149
Sheng J, Xu Y, Yu J, Ding B. ACS Appl Mater Interfaces, 2017, 9(17): 15139-15147. doi:10.1021/acsami.7b02594http://dx.doi.org/10.1021/acsami.7b02594
Qing W, Shi X, Deng Y, Zhang W, Wang J, Tang C Y. J Membr Sci, 2017, 540: 354-361. doi:10.1016/j.memsci.2017.06.060http://dx.doi.org/10.1016/j.memsci.2017.06.060
Wang G, Zhou W, Zhou J, Wang M, Zhang Y, Qiang H. Surf Eng, 2020: 1-10. doi:10.3390/sym10120706http://dx.doi.org/10.3390/sym10120706
Wang D, Sun Q, Hokkanen M J, Zhang C, Lin F Y, Liu Q, Zhu S P. Nature, 2020, 582(7810): 55-59. doi:10.1038/s41586-020-2331-8http://dx.doi.org/10.1038/s41586-020-2331-8
Sun W, Wang L, Yang Z, Li S, Wu T, Liu G. Corros Sci, 2017, 128: 176-185. doi:10.1016/j.corsci.2017.09.005http://dx.doi.org/10.1016/j.corsci.2017.09.005
Zhu T, Li S, Huang J, Mihailiasa M, Lai Y. Mater Design, 2017, 134: 342-351. doi:10.1016/j.matdes.2017.08.071http://dx.doi.org/10.1016/j.matdes.2017.08.071
Gao S, Dong X, Huang J, Li S, Li Y, Chen Z, Lai Y. Chem Eng J, 2018, 333: 621-629. doi:10.1016/j.cej.2017.10.006http://dx.doi.org/10.1016/j.cej.2017.10.006
Wu Y, Shen Y, Tao J, He Z, Xie Y, Chen H, Jin M. New J Chem, 2018, 42(22): 18208-18216. doi:10.1039/c8nj04275fhttp://dx.doi.org/10.1039/c8nj04275f
Cao C, Yi B, Zhang J, Hou C, Wang Z, Lu G, Huang X. Chem Eng J, 2020, 392: 124834. doi:10.1016/j.cej.2020.124834http://dx.doi.org/10.1016/j.cej.2020.124834
0
Views
172
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution