Wang Meng-yao,Jiang Long,Shen Yan-feng,et al.Effect of the Length of Alkyl Chain in the End on the Crystallization and Water Vapor Permeability of Poly(L-lactide)[J].ACTA POLYMERICA SINICA,2021,52(10):1334-1342.
Wang Meng-yao,Jiang Long,Shen Yan-feng,et al.Effect of the Length of Alkyl Chain in the End on the Crystallization and Water Vapor Permeability of Poly(L-lactide)[J].ACTA POLYMERICA SINICA,2021,52(10):1334-1342. DOI: 10.11777/j.issn1000-3304.2021.21106.
Effect of the Length of Alkyl Chain in the End on the Crystallization and Water Vapor Permeability of Poly(L-lactide)
-lactide)s with different long terminal linear alkyl chains were synthesized by the ring opening polymerization of
L
-lactide. The molecular structures and molecular weight of the obtained poly(
L
-lactide)s were characterized by infrared spectroscopy(FTIR)
proton nuclear magnetic resonance spectroscopy (
1
H-NMR) and gel permeation chromatography(GPC). Besides
the crystallization behavior and water vapor permeability of synthesized poly(
L
-lactide)s were investigated by differential scanning calorimetry (DSC) and water vapor permeation instrument. The
1
H-NMR and GPC analysis results show that the alkyl chain was successfully bonded to the end of poly(
L
-lactide)s molecular chain
the molar ratio of
L
-LA to fatty alcohol was constant
and the molecular weight of the samples synthesized by different fatty alcohols was basically consistent with the theoretical value. DSC results display that the crystallization rate of poly(
L
-lactide)s increased with the increase of the length of alkyl chain at 80 ℃. Additionally
The tetradecane group at the end of poly(
L
-lactide)s molecular chain can promote the nucleation and the crystallization at high temperature. Crystallinity of completely crystallized poly(
L
-lactide)s decreased slightly with the increasing molecular weight. Furthermore
measurements on the water vapor transmission performance indicate that the water vapor transmission coefficients of amorphous poly(
L
-lactide) films were stronger than those of crystalline films. The molecular weight of poly(
L
-lactide)s had little effect on the water vapor permeability of the film
so the water vapor permeability can be adjusted by regulating the aggregation structure of poly(
L
-lactide)s
and the poly(
L
-lactide) packaging materials can be better applied to the market.
关键词
聚乳酸烷基链长度结晶性能水蒸气透过性能
Keywords
Poly(L-lactide)sLength of alkyl chainCrystallizationWater vapor transmission property
Rosen T, Goldberg I, Navarra W, Venditto V, Kol M. Angew Chem Int Ed, 2018, 57(24): 7191-7195. doi:10.1002/anie.201803063http://dx.doi.org/10.1002/anie.201803063
Lee S, Jin Y, Lim K T, Lee C H, Chun J H, Lee W K. Mol Cryst Liq Cryst, 2019,688(1): 14-21. doi:10.1080/15421406.2019.1651063http://dx.doi.org/10.1080/15421406.2019.1651063
Qian W H, Song T, Ye M, Xu P C, Lu G L, Huang X Y. Polym Chem, 2017, 8(28): 4098-4107. doi:10.1039/c7py00762khttp://dx.doi.org/10.1039/c7py00762k
Huang Y, Pan Y H, Wang W W, Jiang L, Dan Y. Mater Design, 2019, 162: 285-292. doi:10.1016/j.matdes.2018.11.055http://dx.doi.org/10.1016/j.matdes.2018.11.055
Chiu F C, Wang S W, Peng K Y, Lee R S. Polymer, 2012, 53(16): 3476-3484. doi:10.1016/j.polymer.2012.06.004http://dx.doi.org/10.1016/j.polymer.2012.06.004
Haynes D, Naskar A K, Singh A, Yang C C, Burg K J, Drews M, Harrison G, Smith D W. Macromolecules, 2007, 40(26): 9354-9360. doi:10.1021/ma0712192http://dx.doi.org/10.1021/ma0712192
Fan T T, Ye W Y, Du B B, Zhang Q, Gong L, Li J F, Lin S L, Fan Z Y, Liu Q. J Appl Polym Sci, 2019, 136(33): 47887. doi:10.1002/app.47887http://dx.doi.org/10.1002/app.47887
Zaaba N F, Jaafar M. Polym Eng Sci, 2020, 60(9): 2061-2075. doi:10.1002/pen.25511http://dx.doi.org/10.1002/pen.25511
Kowalczyk M, Pluta M, Piorkowska E, Krasnikova N. J Appl Polym Sci, 2012, 125(6): 4292-4301. doi:10.1002/app.36563http://dx.doi.org/10.1002/app.36563
Tsuji H, Tajima T. Macromol Mater Eng, 2014, 299(4): 430-435. doi:10.1002/mame.201470010http://dx.doi.org/10.1002/mame.201470010
Shen Y F, Huang Y, Jiang L, Dan Y. React Funct Polym, 2020, 148: 104486. doi:10.1016/j.reactfunctpolym.2020.104486http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104486
Lee W K, Losito I, Gardella J A, Hicks W L. Macromolecules, 2001, 34(9): 3000-3006. doi:10.1021/ma0000327http://dx.doi.org/10.1021/ma0000327
Glova A D, Melnikova S D, Mercurieva A A, Larin S V, Nazarychev V M, Polotsky A A, Lyulin S V. Phys Chem Chem Phys, 2021, 23(1): 457-469. doi:10.1039/d0cp04556jhttp://dx.doi.org/10.1039/d0cp04556j
Eslami H, Tzoganakis C, Mekonnen T H. Cellulose, 2020, 27(9): 5267-5284. doi:10.1007/s10570-020-03167-whttp://dx.doi.org/10.1007/s10570-020-03167-w
Bian Y F, Leng X F, Wei Z Y, Wang Z F, Tu Z, Wang Y S, Li Y. Biomacromolecules, 2019, 20(10): 3952-3968. doi:10.1021/acs.biomac.9b01020http://dx.doi.org/10.1021/acs.biomac.9b01020
Zhang Y J, Dayoub W, Chen G R, Lemaire M. Tetrahedron, 2012, 68(36): 7400-7407. doi:10.1016/j.tet.2012.06.080http://dx.doi.org/10.1016/j.tet.2012.06.080
Belotti D, Cantagrel G, Combellas C, Cossy J, Kanoufi F, Nunige S. New J Chem, 2005, 29(6): 761-764. doi:10.1039/b501096ahttp://dx.doi.org/10.1039/b501096a
Long L, Wu S G, Sun J, Wang J, Zhang H J, Qi G H. Anim Nutr, 2015, 1(4): 293-298. doi:10.1016/j.aninu.2015.12.005http://dx.doi.org/10.1016/j.aninu.2015.12.005
Tsuji H, Sugiura Y, Sakamoto Y, Bouapao L. Itsuno S. Polymer, 2008, 49(5): 1385-1397. doi:10.1016/j.polymer.2008.01.029http://dx.doi.org/10.1016/j.polymer.2008.01.029
Tsuji H, Sugimoto S. Polymer, 2014, 55(18): 4786-4798. doi:10.1016/j.polymer.2014.07.012http://dx.doi.org/10.1016/j.polymer.2014.07.012
Fischer E W, Sterzel H J, Wegner G. Colloid Polym Sci, 1973, 251(11): 980-990. doi:10.1007/bf01498927http://dx.doi.org/10.1007/bf01498927
Save M, Schappacher M, Soum A. Macromol Chem Phys, 2002, 203(5-6): 889-899. doi:10.1002/1521-3935(20020401)203:5/6<889::aid-macp889>3.0.co;2-ohttp://dx.doi.org/10.1002/1521-3935(20020401)203:5/6<889::aid-macp889>3.0.co;2-o
Baran J, Duda A, Kowalski A, Szymanski R, Penczek S. Macromol Rapid Commun, 1997, 18(4): 325-333. doi:10.1002/marc.1997.030180409http://dx.doi.org/10.1002/marc.1997.030180409
Zhang Hongan(张鸿安), Teng Jiachun(滕家春), Ge Weidong(葛卫东), Zhang Mingshu(张明枢). Chemical Journal of Chinese Uuiversities(高等学校化学学报), 1985, (8): 753-757
Jiang L, Shen T F, Xu P W, Zhao X Y, Li X J, Dong W F, Ma P M, Chen M Q. e-Polymers, 2016, 16(1): 1-13. doi:10.1515/epoly-2015-0179http://dx.doi.org/10.1515/epoly-2015-0179
Saeidlou S, Huneault M A, Li H B, Park C B. Prog Polym Sci, 2012, 37(12): 1657-1677. doi:10.1016/j.progpolymsci.2012.07.005http://dx.doi.org/10.1016/j.progpolymsci.2012.07.005
Tsuji H. Adv Drug Deliv Rev, 2016, 107: 97-135. doi:10.1016/j.addr.2016.04.017http://dx.doi.org/10.1016/j.addr.2016.04.017
Effect of the Length of Alkyl Chain in the End on the Crystallization and Water Vapor Permeability of Poly(L-lactide)
Effect of Cellulosic Graft Copolymer on Crystallization and Extension Rheology Properties of Polylactic Acid
INVESTIGATION ON INTERFACIAL INTERACTION IN NANO-CaCO3/ COMPATIBILIZER/POLYPROPYLENE COMPOSITES
Related Author
No data
Related Institution
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University
1 Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education,Key Laboratoryof Designed Synthesis and Application of Polymer Materials of Guangdong Province,Materials Science Institute,School of Chemistry and Chemical Engineering,Yat-sen University Guangzhou