浏览全部资源
扫码关注微信
天津大学化工学院 教育部合成生物学前沿科学中心 系统生物工程教育部重点实验室 天津 300350
Published:20 November 2021,
Published Online:26 July 2021,
Received:03 May 2021,
Revised:02 June 2021,
扫 描 看 全 文
董宇航,韩金鹏,仰大勇.“基因式”创制DNA功能材料[J].高分子学报,2021,52(11):1441-1458.
Dong Yu-hang,Han Jin-peng,Yang Da-yong."Gene-like" Construction of DNA Functional Materials[J].ACTA POLYMERICA SINICA,2021,52(11):1441-1458.
董宇航,韩金鹏,仰大勇.“基因式”创制DNA功能材料[J].高分子学报,2021,52(11):1441-1458. DOI: 10.11777/j.issn1000-3304.2021.21130.
Dong Yu-hang,Han Jin-peng,Yang Da-yong."Gene-like" Construction of DNA Functional Materials[J].ACTA POLYMERICA SINICA,2021,52(11):1441-1458. DOI: 10.11777/j.issn1000-3304.2021.21130.
发展新的材料化学系统如建造大楼的“备料”阶段,是决定大楼品质的基石,是功能导向材料体系的分子基础. 实现功能导向的材料设计、合成与过程的精准控制是材料化学领域发展的重要挑战. 在高分子科学中,让高分子像“基因”一样精准控制单体有序合成,完成信息传递和功能定制,是实现高分子材料精准创制的有效策略,即“基因式”精准创制. 作为生命核心遗传物质,DNA分子自带生命基因属性,是可精准编码遗传信息的生物活性大分子,天然地符合材料“基因式”精准创制的构建原则. 本文作者结合自身的研究,评述DNA功能材料的“基因式”创制,主要介绍树枝状DNA和DNA水凝胶2种重要功能材料的构建策略,其中树枝状DNA功能材料的构建策略包括靶标聚合法、酶促延伸法和杂化耦合法,DNA水凝胶的主要构建策略包括模块组装法、酶促扩增法、酶促延伸法、链式杂交法和化学交联法;讨论了DNA功能性材料的分子组装原理和功能调控机制,DNA分子展现出在“基因式”功能化材料创制方面的独有优势,主要为单体的精准排列、结构的精准可控组装、序列信息的精准传递和功能的精准定制;总结了DNA材料“结构-功能-应用”贯通式研究的典型案例,主要集中于蛋白质生产、3D细胞培养、细胞界面工程和疾病治疗等生物医学领域. 期待DNA材料的不断发展能够促进形成一种高分子材料“基因式”创制的典型范式.
Developing a new system of material chemistry is an important molecular foundation for the design and preparation of function-oriented materials. However
precisely controlling the design and synthesis processes of function-oriented materials is still a grand challenge in the field of material chemistry. In terms of polymer science
a major scientific issue is how to manipulate polymers as precisely as "genes" in living systems to control the precise synthesis of polymeric monomers
the precise transmission of sequence information
and the functionalized customization of polymeric materials
which is named as "gene-like" construction of functional polymeric materials. Desoxyribonucleic acid (DNA) with its intrinsic genetic property has exhibited a variety of unique advantages for the "gene-like" construction of polymeric materials. As the central genetic matter of life system
DNA is a bioactive macromolecule with the capacity of encoding the genetic sequence information
which is favourable to the construction of function-oriented materials with living characteristics. This review summarizes the "gene-like" construction of DNA functional materials
mainly from our research group
focusing on the construction strategies of two DNA functional materials including branched DNA and DNA hydrogels. The construction strategies of branched DNA functional materials mainly include target-triggered polymerization
enzymatic extension and hybrid coupling
and the construction strategies of DNA hydrogels are categorized as module assembly
enzymatic amplification
enzymatic elongation
chain hybridization reaction and chemical crosslinking. The molecular assembly principles and functional regulation mechanisms were further disscussed. DNA molecule shows the unique advantages in the "gene-like" construction of functional materials
mainly including the precise arrangement of polymeric monomers
the controllable design and assembly of structure
the precise transmission of sequence information and function customization. Particularly
the sequence information of DNA endows the specific biological functions of DNA functional materials by regulating the order of polymeric monomers. Finally
we exemplify the typical cases of DNA functional materials based on "structure-function-application" research route
focusing on protein production
3D cell culture
cell interfacial engineering
disease treatment and other biomedical fields. It is expected that the flourishing development of DNA functional materials will open a new avenue and provide a feasible paradigm for the "gene-like" construction of functional polymeric materials.
DNA功能高分子DNA水凝胶树枝状DNADNA纳米技术“基因式”材料创制
DNA functional polymerDNA hydrogelBranched DNADNA nanotechnology"Gene-like" construction of materials
Zhang Xi(张希). Acta Polymerica Sinica(高分子学报), 2020, 51(1): Doi: 10.11777/j.issn1000-3304.2020.20no1. doi:10.11777/j.issn1000-3304.2020.20no1http://dx.doi.org/10.11777/j.issn1000-3304.2020.20no1
Jiang Wei(姜玮), Liang Zhenxing(梁振兴), Zhang Guojun(张国俊). Scientia Sinica Chimica(中国科学:化学), 2021, 51(4): 451-457. doi:10.1360/ssc-2021-0017http://dx.doi.org/10.1360/ssc-2021-0017
Lutz J F. ACS Macro Lett, 2020, 9(2): 185-189. doi:10.1021/acsmacrolett.9b00938http://dx.doi.org/10.1021/acsmacrolett.9b00938
Luo D. Mater Today, 2003, 6(11): 38-43. doi:10.1016/s1369-7021(03)01130-1http://dx.doi.org/10.1016/s1369-7021(03)01130-1
Guo Y, Zhang J, Ding F, Pan G, Li J, Feng J, Zhu X, Zhang C. Adv Mater, 2019, 31(16): 1807533. doi:10.1002/adma.201807533http://dx.doi.org/10.1002/adma.201807533
Zhang J, Guo Y, Ding F, Pan G, Zhu X, Zhang C. Angew Chem Int Ed, 2019, 58(39): 13794-13798. doi:10.1002/anie.201907380http://dx.doi.org/10.1002/anie.201907380
Zhang Y, Tu J, Wang D, Zhu H, Maity S K, Qu X, Bogaert B, Pei H, Zhang H. Adv Mater, 2018, 30(24): 1703658. doi:10.1002/adma.201703658http://dx.doi.org/10.1002/adma.201703658
Hong F, Zhang F, Liu Y, Yan H. Chem Rev, 2017, 117(20): 12584-12640. doi:10.1021/acs.chemrev.6b00825http://dx.doi.org/10.1021/acs.chemrev.6b00825
Seeman N C, Sleiman H F. Nat Rev Mater, 2017, 3(1): 17068. doi:10.1038/natrevmats.2017.68http://dx.doi.org/10.1038/natrevmats.2017.68
Platnich C M, Hariri A A, Sleiman H F, Cosa G. Acc Chem Res, 2019, 52(11): 3199-3210. doi:10.1021/acs.accounts.9b00424http://dx.doi.org/10.1021/acs.accounts.9b00424
Liu N, Liedl T. Chem Rev, 2018, 118(6): 3032-3053. doi:10.1021/acs.chemrev.7b00225http://dx.doi.org/10.1021/acs.chemrev.7b00225
Zhou W, Saran R, Liu J. Chem Rev, 2017, 117(12): 8272-8325. doi:10.1021/acs.chemrev.7b00063http://dx.doi.org/10.1021/acs.chemrev.7b00063
Pei H, Zuo X L, Zhu D, Huang Q, Fan C H. Acc Chem Res, 2014, 47(2): 550-559. doi:10.1021/ar400195thttp://dx.doi.org/10.1021/ar400195t
Ge Z, Gu H, Li Q, Fan C. J Am Chem Soc, 2018, 140(51): 17808-17819. doi:10.1021/jacs.8b10529http://dx.doi.org/10.1021/jacs.8b10529
Lu Shuang(鲁爽), Fang Weina(方维娜), Wang Lihua(王丽华), Liu Huajie(柳华杰). Acta Polymerica Sinica(高分子学报), 2019, 50(9): 964-972. doi:10.11777/j.issn1000-3304.2019.19049http://dx.doi.org/10.11777/j.issn1000-3304.2019.19049
Zhang Wenbin(张文彬). Acta Polymerica Sinica(高分子学报), 2021, 52(4): 335-338. doi:10.11777/j.issn1000-3304.2020.20275http://dx.doi.org/10.11777/j.issn1000-3304.2020.20275
Li Hao(李浩), Hao Yaya(郝亚亚), Wang Fei(王飞), Wang Lihua(王丽华), Liu Gang(刘刚). Acta Polymerica Sinica(高分子学报), 2020, 51(7): 728-737. doi:10.11777/j.issn1000-3304.2020.20055http://dx.doi.org/10.11777/j.issn1000-3304.2020.20055
Peng S, Derrien T L, Cui J, Xu C, Luo D. Mater Today, 2012, 15(5): 190-194. doi:10.1016/s1369-7021(12)70089-5http://dx.doi.org/10.1016/s1369-7021(12)70089-5
Yang D, Hartman M R, Derrien T L, Hamada S, An D, Yancey K G, Cheng R, Ma M, Luo D. Acc Chem Res, 2014, 47(6): 1902-1911. doi:10.1021/ar5001082http://dx.doi.org/10.1021/ar5001082
Kahn J S, Hu Y, Willner I. Acc Chem Res, 2017, 50(4): 680-690. doi:10.1021/acs.accounts.6b00542http://dx.doi.org/10.1021/acs.accounts.6b00542
Shao Y, Jia H, Cao T, Liu D. Acc Chem Res, 2017, 50(4): 659-668. doi:10.1021/acs.accounts.6b00524http://dx.doi.org/10.1021/acs.accounts.6b00524
Roh Y H, Ruiz R C, Peng S, Lee J B, Luo D. Chem Soc Rev, 2011, 40(12): 5730-5744. doi:10.1039/c1cs15162bhttp://dx.doi.org/10.1039/c1cs15162b
Li F, Tang J, Geng J, Luo D, Yang D. Prog Polym Sci, 2019, 98: 101163. doi:10.1016/j.progpolymsci.2019.101163http://dx.doi.org/10.1016/j.progpolymsci.2019.101163
Vazquez-Gonzalez M, Willner I. Angew Chem Int Ed, 2020, 59(36): 15342-15377. doi:10.1002/anie.201907670http://dx.doi.org/10.1002/anie.201907670
Duskova K, Lejault P, Benchimol E, Guillot R, Britton S, Granzhan A, Monchaud D. J Am Chem Soc, 2020, 142(1): 424-435. doi:10.1021/jacs.9b11150http://dx.doi.org/10.1021/jacs.9b11150
Seeman N C. J Theor Biol, 1982, 99(2): 237-247. doi:10.1016/0022-5193(82)90002-9http://dx.doi.org/10.1016/0022-5193(82)90002-9
Dong Y, Yao C, Zhu Y, Yang L, Luo D, Yang D. Chem Rev, 2020, 120(17): 9420-9481. doi:10.1021/acs.chemrev.0c00294http://dx.doi.org/10.1021/acs.chemrev.0c00294
Li Y, Tseng Y D, Kwon S Y, D'Espaux L, Bunch J S, McEuen P L, Luo D. Nat Mater, 2004, 3(1): 38-42. doi:10.1038/nmat1045http://dx.doi.org/10.1038/nmat1045
Lee J B, Roh Y H, Um S H, Funabashi H, Cheng W, Cha J J, Kiatwuthinon P, Muller D A, Luo D. Nat Nanotechnol, 2009, 4(7): 430-436. doi:10.1038/nnano.2009.93http://dx.doi.org/10.1038/nnano.2009.93
Zhou W, Li Q, Liu H, Yang J, Liu D. ACS Nano, 2017, 11(4): 3532-3541. doi:10.1021/acsnano.7b00531http://dx.doi.org/10.1021/acsnano.7b00531
Li F, Dong Y, Zhang Z, Lv M, Wang Z, Ruan X, Yang D. Biosens Bioelectron, 2018, 117: 562-566. doi:10.1016/j.bios.2018.06.053http://dx.doi.org/10.1016/j.bios.2018.06.053
Dong Y, Yao C, Wang Z, Luo D, Yang D. iScience, 2019, 21: 228-240. doi:10.1016/j.isci.2019.10.029http://dx.doi.org/10.1016/j.isci.2019.10.029
Han J, Cui Y, Gu Z, Yang D. Biomaterials, 2021, 273: 120846. doi:10.1016/j.biomaterials.2021.120846http://dx.doi.org/10.1016/j.biomaterials.2021.120846
Vargas-Baca I, Mitra D, Zulyniak H J, Banerjee J, Sleiman H F. Angew Chem Int Ed, 2001, 40(24): 4629-4632. doi:10.1002/1521-3773(20011217)40:24<4629::aid-anie4629>3.0.co;2-shttp://dx.doi.org/10.1002/1521-3773(20011217)40:24<4629::aid-anie4629>3.0.co;2-s
Endo M, Majima T. J Am Chem Soc, 2003, 125(45): 13654-13655. doi:10.1021/ja036752lhttp://dx.doi.org/10.1021/ja036752l
Lee J K, Jung Y H, Tok J B H, Bao Z. ACS Nano, 2011, 5(3): 2067-2074. doi:10.1021/nn1032455http://dx.doi.org/10.1021/nn1032455
Hartman M R, Yang D, Tran T N, Lee K, Kahn J S, Kiatwuthinon P, Yancey K G, Trotsenko O, Minko S, Luo D. Angew Chem Int Ed, 2013, 52(33): 8699-8702. doi:10.1002/anie.201302175http://dx.doi.org/10.1002/anie.201302175
Guo X, Bai L, Li F, Huck W T S, Yang D. Chembiochem, 2019, 20(20): 2597-2603. doi:10.1002/cbic.201900094http://dx.doi.org/10.1002/cbic.201900094
Guo X, Li F, Bai L, Yu W, Zhang X, Zhu Y, Yang D. J Am Chem Soc, 2019, 141(48): 19171-19177. doi:10.1021/jacs.9b11407http://dx.doi.org/10.1021/jacs.9b11407
Lv J, Dong Y, Gu Z, Yang D. Chem Eur J, 2020, 26(64): 14512-14524. doi:10.1002/chem.202002242http://dx.doi.org/10.1002/chem.202002242
Li J, Green A A, Yan H, Fan C. Nat Chem, 2017, 9(11): 1056-1067. doi:10.1038/nchem.2852http://dx.doi.org/10.1038/nchem.2852
Chen P, Zhang T, Zhou T, Liu D. RSC Adv, 2016, 6(74): 70553-70556. doi:10.1039/c6ra16653ahttp://dx.doi.org/10.1039/c6ra16653a
Guo W, Orbach R, Mironi-Harpaz I, Seliktar D, Willner I. Small, 2013, 9(22): 3748-3752. doi:10.1002/smll.201300055http://dx.doi.org/10.1002/smll.201300055
Ma X, Yang Z, Wang Y, Zhang G, Shao Y, Jia H, Cao T, Wang R, Liu D. ACS Appl Mater Interfaces, 2017, 9(3): 1995-2000. doi:10.1021/acsami.6b12327http://dx.doi.org/10.1021/acsami.6b12327
Wu Y, Li C, Boldt F, Wang Y, Kuan S L, Tran T T, Mikhalevich V, Fortsch C, Barth H, Yang Z, Liu D, Weil T. Chem Commun, 2014, 50(93): 14620-14622. doi:10.1039/c4cc07144ahttp://dx.doi.org/10.1039/c4cc07144a
Zhang C, Macfarlane R J, Young K L, Choi C H, Hao L, Auyeung E, Liu G, Zhou X, Mirkin C A. Nat Mater, 2013, 12(8): 741-746. doi:10.1038/nmat3647http://dx.doi.org/10.1038/nmat3647
Guo L, Xu Y, Ferhan A R, Chen G, Kim D H. J Am Chem Soc, 2013, 135(33): 12338-12345. doi:10.1021/ja405371ghttp://dx.doi.org/10.1021/ja405371g
Li C, Chen P, Shao Y, Zhou X, Wu Y, Yang Z, Li Z, Weil T, Liu D. Small, 2015, 11(9-10): 1138-1143. doi:10.1002/smll.201401906http://dx.doi.org/10.1002/smll.201401906
Pei H, Li F, Wan Y, Wei M, Liu H, Su Y, Chen N, Huang Q, Fan C. J Am Chem Soc, 2012, 134(29): 11876-11879. doi:10.1021/ja304118zhttp://dx.doi.org/10.1021/ja304118z
Yang L, Yao C, Li F, Dong Y, Zhang Z, Yang D. Small, 2018, 14(16): 1800185. doi:10.1002/smll.201800185http://dx.doi.org/10.1002/smll.201800185
Aldaye F A, Sleiman H F. J Am Chem Soc, 2007, 129(33): 10070-10071. doi:10.1021/ja073305nhttp://dx.doi.org/10.1021/ja073305n
Tian Y, Zhang Y, Wang T, Xin H L, Li H, Gang O. Nat Mater, 2016, 15(6): 654-661. doi:10.1038/nmat4571http://dx.doi.org/10.1038/nmat4571
Wang X, Sha R, Kristiansen M, Hernandez C, Hao Y, Mao C, Canary J W, Seeman N C. Angew Chem Int Ed, 2017, 56(23): 6445-6448. doi:10.1002/anie.201700462http://dx.doi.org/10.1002/anie.201700462
Liao R, Zhao F, Hamada S, Yang P, Xu H, Luo D, Yang D. Nano Today, 2020, 35: 100958. doi:10.1016/j.nantod.2020.100958http://dx.doi.org/10.1016/j.nantod.2020.100958
Wang Fei(王飞), Zhong Ruibo(钟睿博), Tang Qian(唐倩), Wang Jianbang(王建榜), Liu Huajie(柳华杰), Qu Xiangmeng(瞿祥猛), Wang Lihua(王丽华), Pei Hao(裴昊). Acta Polymerica Sinica(高分子学报), 2018, (5): 553-558. doi:10.11777/j.issn1000-3304.2018.18070http://dx.doi.org/10.11777/j.issn1000-3304.2018.18070
Um S H, Lee J B, Park N, Kwon S Y, Umbach C C, Luo D. Nat Mater, 2006, 5(10): 797-801. doi:10.1038/nmat1741http://dx.doi.org/10.1038/nmat1741
Qu Y, Yang J, Zhan P, Liu S, Zhang K, Jiang Q, Li C, Ding B. ACS Appl Mater Interfaces, 2017, 9(24): 20324-20329. doi:10.1021/acsami.7b05890http://dx.doi.org/10.1021/acsami.7b05890
Mohri K, Nishikawa M, Takahashi N, Shiomi T, Matsuoka N, Ogawa K, Endo M, Hidaka K, Sugiyama H, Takahashi Y, Takakura Y. ACS Nano, 2012, 6(7): 5931-5940. doi:10.1021/nn300727jhttp://dx.doi.org/10.1021/nn300727j
Matsuoka N, Nishikawa M, Mohri K, Rattanakiat S, Takakura Y. J Control Release, 2010, 148(3): 311-316. doi:10.1016/j.jconrel.2010.09.019http://dx.doi.org/10.1016/j.jconrel.2010.09.019
Nishikawa M, Mizuno Y, Mohri K, Matsuoka N, Rattanakiat S, Takahashi Y, Funabashi H, Luo D, Takakura Y. Biomaterials, 2011, 32(2): 488-494. doi:10.1016/j.biomaterials.2010.09.013http://dx.doi.org/10.1016/j.biomaterials.2010.09.013
Umeki Y, Mohri K, Kawasaki Y, Watanabe H, Takahashi R, Takahashi Y, Takakura Y, Nishikawa M. Adv Funct Mater, 2015, 25(36): 5758-5767. doi:10.1002/adfm.201502139http://dx.doi.org/10.1002/adfm.201502139
Shao Y, Sun Z Y, Wang Y, Zhang B D, Liu D, Li Y M. ACS Appl Mater Interfaces, 2018, 10(11): 9310-9314. doi:10.1021/acsami.8b00312http://dx.doi.org/10.1021/acsami.8b00312
Park N, Um S H, Funabashi H, Xu J, Luo D. Nat Mater, 2009, 8(5): 432-437. doi:10.1038/nmat2419http://dx.doi.org/10.1038/nmat2419
Xing Y, Cheng E, Yang Y, Chen P, Zhang T, Sun Y, Yang Z, Liu D. Adv Mater, 2011, 23(9): 1117-1121. doi:10.1002/adma.201003343http://dx.doi.org/10.1002/adma.201003343
Shi Jiezhong(史杰中), Jia Haoyang(贾昊旸), Liu Dongsheng(刘冬生). Acta Polymerica Sinica(高分子学报), 2017, (1): 135-142. doi:10.11777/j.issn1000-3304.2017.16278http://dx.doi.org/10.11777/j.issn1000-3304.2017.16278
Li C, Faulkner-Jones A, Dun A R, Jin J, Chen P, Xing Y, Yang Z, Li Z, Shu W, Liu D, Duncan R R. Angew Chem Int Ed, 2015, 54(13): 3957-3961. doi:10.1002/anie.201411383http://dx.doi.org/10.1002/anie.201411383
Nishikawa M, Ogawa K, Umeki Y, Mohri K, Kawasaki Y, Watanabe H, Takahashi N, Kusuki E, Takahashi R, Takahashi Y, Takakura Y. J Control Release, 2014, 180: 25-32. doi:10.1016/j.jconrel.2014.02.001http://dx.doi.org/10.1016/j.jconrel.2014.02.001
Li C, Rowland M J, Shao Y, Cao T, Chen C, Jia H, Zhou X, Yang Z, Scherman O A, Liu D. Adv Mater, 2015, 27(21): 3298-3304. doi:10.1002/adma.201501102http://dx.doi.org/10.1002/adma.201501102
Ali M M, Li F, Zhang Z, Zhang K, Kang D K, Ankrum J A, Le X C, Zhao W. Chem Soc Rev, 2014, 43(10): 3324-3341. doi:10.1039/c3cs60439jhttp://dx.doi.org/10.1039/c3cs60439j
Zhao W, Ali M M, Brook M A, Li Y. Angew Chem Int Ed, 2008, 47(34): 6330-6337. doi:10.1002/anie.200705982http://dx.doi.org/10.1002/anie.200705982
Tang J, Yao C, Gu Z, Jung S, Luo D, Yang D. Angew Chem Int Ed, 2020, 59(6): 2490-2495. doi:10.1002/anie.201913549http://dx.doi.org/10.1002/anie.201913549
Yao C, Tang H, Wu W, Tang J, Guo W, Luo D, Yang D. J Am Chem Soc, 2020, 142(7): 3422-3429. doi:10.1021/jacs.9b11001http://dx.doi.org/10.1021/jacs.9b11001
Lee J B, Peng S, Yang D, Roh Y H, Funabashi H, Park N, Rice E J, Chen L, Long R, Wu M, Luo D. Nat Nanotechnol, 2012, 7(12): 816-820. doi:10.1038/nnano.2012.211http://dx.doi.org/10.1038/nnano.2012.211
Geng J, Yao C, Kou X, Tang J, Luo D, Yang D. Adv Healthc Mater, 2018, 7(5): 1700998. doi:10.1002/adhm.201700998http://dx.doi.org/10.1002/adhm.201700998
Hartman M R, Yang D, Tran T N N, Lee K, Kahn J S, Kiatwuthinon P, Yancey K G, Trotsenko O, Minko S, Luo D. Angew Chem Int Ed, 2013, 52(33): 8699-8702. doi:10.1002/anie.201302175http://dx.doi.org/10.1002/anie.201302175
Guo X, Li F, Liu C, Zhu Y, Xiao N, Gu Z, Luo D, Jiang J, Yang D. Angew Chem Int Ed, 2020, 59(46): 20651-20658. doi:10.1002/anie.202009387http://dx.doi.org/10.1002/anie.202009387
Li F, Yu W, Zhang X, Guo X, Xu X, Sun X, Yang D. Sci China Chem, 2020, 63(99): 1674-7291. doi:10.1007/s11426-019-9617-7http://dx.doi.org/10.1007/s11426-019-9617-7
0
Views
126
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution