浏览全部资源
扫码关注微信
1.上海大学材料科学与工程学院,高分子材料系,上海 200444
2.上海大学材料科学与工程学院,电子信息材料系,上海 200444
Ying He, E-mail: yinghe@staff.shu.edu.cn
Published:20 December 2021,
Published Online:09 October 2021,
Received:17 May 2021,
Revised:19 June 2021,
扫 描 看 全 文
殷瑕,伍泽鑫,庞尔宝等.新型咔唑/喹啉基AIEE-TADF蓝光材料及其器件研究[J].高分子学报,2021,52(12):1578-1590.
Yin Xia,Wu Ze-xin,Pang Er-bao,et al.Small-molecule and Polymer Based on Carbazole/Quinoline Derivatives Exhibiting AIEE and TADF Properties for Efficient Solution-processable Nondoped Blue OLEDs[J].ACTA POLYMERICA SINICA,2021,52(12):1578-1590.
殷瑕,伍泽鑫,庞尔宝等.新型咔唑/喹啉基AIEE-TADF蓝光材料及其器件研究[J].高分子学报,2021,52(12):1578-1590. DOI: 10.11777/j.issn1000-3304.2021.21144.
Yin Xia,Wu Ze-xin,Pang Er-bao,et al.Small-molecule and Polymer Based on Carbazole/Quinoline Derivatives Exhibiting AIEE and TADF Properties for Efficient Solution-processable Nondoped Blue OLEDs[J].ACTA POLYMERICA SINICA,2021,52(12):1578-1590. DOI: 10.11777/j.issn1000-3304.2021.21144.
以咔唑作为电子供体(D),喹啉作为电子受体(A),苯基间隔基作为
π
-桥,设计并构建了具有D-
π
-A结构的纯有机咔唑/喹啉衍生物—9-[4-(喹啉-8-基)苯基]-9
H
-咔唑(CPBA-Qx),并在所设计的蓝光小分子CPBA-Qx基础上,利用骨架-供体/悬垂-受体(BDPA)的设计策略,引入苯环作为间隔单元设计并合成了蓝光聚合物—聚[3-苯基-9-(4-(喹啉-8-基)苯基)-9
H
-咔唑](poly(CPBAQx-P)). 对所合成材料的光物理性能研究表明,CPBA-Qx和poly(CPBAQx-P)在THF/H
2
O混合溶液中均表现出典型的聚集诱导增强发射(AIEE)特征,二者的延迟寿命分别为1.25和1.09 µs,出色的TADF特性与其具有较小的单-三重态能级差(Δ
E
ST
分别为0.11和0.16 eV)密不可分. 基于CPBA-Qx和poly(CPBAQx-P)作为非掺杂发光层制备的溶液法加工OLED器件,其启亮电压(
V
on
)和阈值电压(
V
th
)分别为3.26/12 V、2.91/11 V,最大外量子效率(EQE
max
)和国际照明委员会(CIE)坐标分别为5.24%和(0.19,0.12)、8.39%和(0.17,0.10). 此外,在1000 cd·m
-2
亮度下,基于poly(CPBAQx-P)的器件仍能高效发光(EQE=7.42%),效率滚降非常小,且具有窄半峰宽(FWHM)(59 nm)和CIE
y
值 ≤ 0.1.
A novel organic carbazolyl-quinoline derivative with D-
π
-A structure
9-[4-(quinoline-8-yl)phenyl]-9
H
-carbazole (CPBA-Qx)
was designed and synthesized
in which carbazole was used as electron donor (D)
quinoline as the electron acceptor (A) and phenyl spacer as
π
-bridge. Based on the designed blue-emitting small-molecule CPBA-Qx
a blue-emitting polymer
poly[3-phenyl-9-(4-(quinoline-8-yl)phenyl)-9
H
-carbazole] (poly(CPBAQx-P))
was designed and synthesized by Suzuki coupling copolymerization with donor as the main chain and acceptor as the side chain according to the molecular designing strategy of TADF polymer. Aggregation-induced enhanced emission (AIEE) performances of CPBA-Qx and poly(CPBAQx-P) were examined by studying the PL emission behaviour of their diluted mixtures in THF/H
2
O with different water fractions (
f
w
). Compared with pure solution
the study showed that the PL intensity and quantum yield (
Φ
PL
) of CPBA-Qx and poly(CPBAQx-P) are significantly enhanced by 2‒10 times in the aggregate state
exhibiting typical AIEE characteristics. Meanwhile
both of them exhibited obviously delayed fluorescence with the lifetime of 1.25 and 1.09 μs
accompanied by prompt fluorescence of 3.78 and 3.41 ns. For instance
the temperature-dependent transient photoluminescence spectra measured for CPBA-Qx and poly(CPBAQx-P) displayed enhanced delayed fluorescence upon the temperature rising from 100 K to 300 K
indicative of their TADF nature. The excellent TADF characteristics were closely related to extremely narrow singlet-triplet state energy splitting (Δ
E
ST
CPBA-Qx 0.11 eV and poly(CPBAQx-P) 0.16 eV). As a consequence
using CPBA-Qx and (poly(CPBAQx-P) as emitters
the turn-on voltage (
V
on
) and threshold voltage (
V
th
) of solution-processable nondoped OLEDs were 3.26/12 V and 2.91/11 V
respectively. The maximum external quantum efficiency (EQE
max
) and Commission Internationale De L'Eclairage (CIE) coordinates were 5.24% and (0.19
0.12)
8.39% and (0.17
0.10)
respectively. Moreover
the non-doped OLED based on poly(CPBAQx-P) can retain high EL efficiency (EQE=7.42%) at 1000 cd·m
-2
with small efficiency roll-off
a narrow full width at half maximum (FWHM=59 nm) and CIE
y
≤0.1. To sum up
poly(CPBAQx-P) as an emitter has great potential in solution-processed non-doped OLEDs
which lays experimental foundation for the application of AIEE-TADF polymer in OLEDs.
热激活延迟荧光聚集诱导增强发射蓝光咔唑基喹啉衍生物有机发光二极管非掺杂器件
Thermally activated delayed fluorescenceAggregation induced enhanced emissionBlue emissionCarbazolyl quinoline derivativesOrganic light-emitting diodesNon-doped devices
Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492(7428): 234-238. doi:10.1038/nature11687http://dx.doi.org/10.1038/nature11687
Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C. Adv Mater, 2009, 21(47): 4802-4806. doi:10.1002/adma.200900983http://dx.doi.org/10.1002/adma.200900983
Ahn D H, Kim S W, Lee H, Ko I J, Karthik D, Lee J Y, Kwon J H. Nat Photon, 2019, 13(8): 540-546. doi:10.1038/s41566-019-0415-5http://dx.doi.org/10.1038/s41566-019-0415-5
Barman D, Gogoi R, Narang K, Iyer P K. Front Chem, 2020, 8: 483. doi:10.3389/fchem.2020.00483http://dx.doi.org/10.3389/fchem.2020.00483
He Y, Cheng N H, Xu X, Fu J W, Wang J A. Org Electron, 2019, 64: 247-251. doi:10.1016/j.orgel.2018.10.012http://dx.doi.org/10.1016/j.orgel.2018.10.012
Gan S F, Hu S M, Li X L, Zeng J J, Zhang D D, Huang T Y, Luo W W, Zhao Z J, Duan L, Su S J, Tang B Z. ACS Appl Mater Interfaces, 2018, 10(20): 17327-17334. doi:10.1021/acsami.8b05389http://dx.doi.org/10.1021/acsami.8b05389
Tao Y, Yuan K, Chen T, Xu P, Li H H, Chen R F, Zheng C, Zhang L, Huang W. Adv Mater, 2014, 26(47): 7931-7958. doi:10.1002/adma.201402532http://dx.doi.org/10.1002/adma.201402532
Shen Y F, Li M, Zhao W L, Wang Y F, Lu Y H, Chen C F. Mater Chem Front, 2020, 5(2): 834-842. doi:10.1039/d0qm00628ahttp://dx.doi.org/10.1039/d0qm00628a
Wang Z J, Zhu X Y, Zhang S K, Xu L T, Zhao Z J, He G. Adv Opt Mater, 2020, 9(5): 2001764. doi:10.1002/adom.202001764http://dx.doi.org/10.1002/adom.202001764
Guo R D, Leng P P, Zhang Q, Wang Y X, Lv X L, Sun S Q, Ye S F, Duan Y L, Wang L. Dyes Pigm, 2021, 184: 108781. doi:10.1016/j.dyepig.2020.108781http://dx.doi.org/10.1016/j.dyepig.2020.108781
Luo T Y, Lin Z s, Li Z Y, Wang Y, Xu W H, Zhao C X, Wang H, Luan X J. Org Electron, 2021, 88: 106003. doi:10.1016/j.orgel.2020.106003http://dx.doi.org/10.1016/j.orgel.2020.106003
Ma F L, Zhao G M, Zheng Y, He F R, Hasrat K, Qi Z J. ACS Appl Mater Interfaces, 2020, 12(1): 1179-1189. doi:10.1021/acsami.9b17545http://dx.doi.org/10.1021/acsami.9b17545
Sun K Y, Liu D, Tian W W, Gu F, Wang W X, Cai Z S, Jiang W, Sun Y M. J Mater Chem C, 2020, 8(34): 11850-11859. doi:10.1039/d0tc02577ahttp://dx.doi.org/10.1039/d0tc02577a
Wang Z J, Zhao J W, Muddassir M, Guan R F, Tao S L. Inorg Chem, 2021, 60(7): 4705-4716. doi:10.1021/acs.inorgchem.0c03664http://dx.doi.org/10.1021/acs.inorgchem.0c03664
Lee S Y, Yasuda T, Yang Y S, Zhang Q S, Adachi C. Angew Chem Int Ed, 2014, 53(25): 6402-6406. doi:10.1002/anie.201402992http://dx.doi.org/10.1002/anie.201402992
Zhang Q S, Li J, Shizu K, Huang S P, Hirata S, Miyazaki H, Adachi C. J Am Chem Soc, 2012, 134(36): 14706-14709. doi:10.1021/ja306538whttp://dx.doi.org/10.1021/ja306538w
Zhang Q S, Tsang D, Kuwabara H, Hatae Y, Li B, Takahashi T, Lee S Y, Yasuda T, Adachi C. Adv Mater, 2015, 27(12): 2096-2100. doi:10.1002/adma.201405474http://dx.doi.org/10.1002/adma.201405474
Lin T A, Chatterjee T, Tsai W L, Lee W K, Wu M J, Jiao M, Pan K C, Yi C L, Chung C L, Wong K T, Wu C C. Adv Mater, 2016, 28(32): 6976-6983. doi:10.1002/adma.201601675http://dx.doi.org/10.1002/adma.201601675
Xiang Y P, Gong S L, Zhao Y B, Yin X J, Luo J J, Wu K L, Lu Z H, Yang C L. J Mater Chem C, 2016, 4(42): 9998-10004. doi:10.1039/c6tc02702dhttp://dx.doi.org/10.1039/c6tc02702d
Kawasumi K, Wu T, Zhu T Y, Chae H S, Voorhis V T, Baldo M A, Swager T M. J Am Chem Soc, 2015, 137(37): 11908-11911. doi:10.1021/jacs.5b07932http://dx.doi.org/10.1021/jacs.5b07932
Furue R, Nishimoto T, Park I S, Lee J Y, Yasuda T. Angew Chem Int Ed, 2016, 55(25): 7171-7175. doi:10.1002/anie.201603232http://dx.doi.org/10.1002/anie.201603232
Lee D R, Kim M, Jeon S K, Hwang S H, Lee C W, Lee J Y. Adv Mater, 2015, 27(39): 5861-5867. doi:10.1002/adma.201502053http://dx.doi.org/10.1002/adma.201502053
Yin X, He Y, Wang X, Wu Z X, Pang E B, Xu J, Wang J A. Front Chem, 2020, 8: 725. doi:10.3389/fchem.2020.00725http://dx.doi.org/10.3389/fchem.2020.00725
Liu Y C, Li C S, Ren Z J, Yan S K, Bryce M R. Nat Rev Mater, 2018, 3(4): 18020. doi:10.1038/natrevmats.2018.20http://dx.doi.org/10.1038/natrevmats.2018.20
Xie G Z, Li X L, Chen D J, Wang Z H, Cai X Y, Chen D C, Li Y C, Liu K K, Cao Y, Su S J. Adv Mater, 2016, 28(1): 181-187. doi:10.1002/adma.201503225http://dx.doi.org/10.1002/adma.201503225
Komino T, Nomura H, Koyanagi T, Adachi C. Chem Mater, 2013, 25(15): 3038-3047. doi:10.1021/cm4011597http://dx.doi.org/10.1021/cm4011597
Cai X Y, Li X L, Xie G Z, He Z Z, Gao K, Liu K K, Chen D C, Cao Y, Su S J. Chem Sci, 2016, 7(7): 4264-4275. doi:10.1039/c6sc00542jhttp://dx.doi.org/10.1039/c6sc00542j
Gao W, Ma X L, An Q S, Gao J H, Zhong C, Zhang F J, Yang C L. J Mater Chem A, 2020, 8(29): 14583-14591. doi:10.1039/d0ta03985chttp://dx.doi.org/10.1039/d0ta03985c
Luo J D, Xie Z L, Lam J W Y, Cheng L, Chen H Y, Qiu C F, Kwok H S, Zhan X W, Liu Y Q, Zhu D B, Tang B Z. Chem Commun, 2001, (18): 1740-1741. doi:10.1039/b105159hhttp://dx.doi.org/10.1039/b105159h
Mei J, Hong Y N, Lam J W Y, Qin A J, Tang Y H, Tang B Z. Adv Mater, 2014, 26(31): 5429-5479. doi:10.1002/adma.201401356http://dx.doi.org/10.1002/adma.201401356
Gan S F, Luo W W, He B R, Chen L, Nie H, Hu R R, Qin A J, Zhao Z J, Tang B Z. J Mater Chem C, 2016, 4(17): 3705-3708. doi:10.1039/c5tc03588khttp://dx.doi.org/10.1039/c5tc03588k
Xie Z L, Chen C J, Xu S D, Li J, Zhang Y, Liu S W, Xu J R, Chi Z G. Angew Chem Int Ed, 2015, 54(24): 7181-7184. doi:10.1002/anie.201502180http://dx.doi.org/10.1002/anie.201502180
Wang J S, Liu C, Jiang C F, Yao C, Gu M, Wang W. Org Electron, 2019, 65: 170-178. doi:10.1016/j.orgel.2018.11.018http://dx.doi.org/10.1016/j.orgel.2018.11.018
Tan J H, Chen W C, Ni S F, Qiu Z P, Zhan Y Y, Yang Z W, Xiong J W, Cao C, Huo Y P, Lee C S. J Mater Chem C, 2020, 8(24): 8061-8068. doi:10.1039/d0tc01733ghttp://dx.doi.org/10.1039/d0tc01733g
Guo J J, Li X L, Nie H, Luo W W, Gan S F, Hu S M, Hu R R, Qin A J, Zhao Z J, Su S J, Tang B Z. Adv Funct Mater, 2017, 27(13): 1606458. doi:10.1002/adfm.201606458http://dx.doi.org/10.1002/adfm.201606458
Zeng J J, Guo J J, Liu H, Zhao Z J, Tang B Z. Adv Funct Mater, 2020, 30(17): 2000019. doi:10.1002/adfm.202000019http://dx.doi.org/10.1002/adfm.202000019
Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Chem Rev, 2015, 115(21): 11718-11940. doi:10.1021/acs.chemrev.5b00263http://dx.doi.org/10.1021/acs.chemrev.5b00263
Tsujimoto H, Ha D G, Markopoulos G, Chae H S, Baldo M A, Swager T M. J Am Chem Soc, 2017, 139(13): 4894-4900. doi:10.1021/jacs.7b00873http://dx.doi.org/10.1021/jacs.7b00873
Liu J Z, Lam J W Y, Tang B Z. Chem Rev, 2009, 109(11): 5799-5867. doi:10.1021/cr900149dhttp://dx.doi.org/10.1021/cr900149d
Godumala M, Choi S, Cho M J, Choi D H. J Mater Chem C, 2019, 7(8): 2172-2198. doi:10.1039/c8tc06293ehttp://dx.doi.org/10.1039/c8tc06293e
Nobuyasu R S, Ren Z, Griffiths G C, Batsanov A S, Data P, Yan S K, Monkman A P, Bryce M R, Dias F B. Adv Opt Mater, 2016, 4: 597-607. doi:10.1002/adom.201500689http://dx.doi.org/10.1002/adom.201500689
Zhu Y H, Zhang Y W, Yao B, Wang Y J, Zhang Z L, Zhan H M, Zhang B H, Xie Z Y, Wang Y, Cheng Y X. Macromolecules, 2016, 49(11): 4373-4377. doi:10.1021/acs.macromol.6b00430http://dx.doi.org/10.1021/acs.macromol.6b00430
Cao Y Q, Xi Y, Teng X Y, Li Y, Yan X L, Chen L G. Dyes Pigm, 2017, 137: 75-83. doi:10.1016/j.dyepig.2016.09.063http://dx.doi.org/10.1016/j.dyepig.2016.09.063
Chen L, Jiang Y B, Nie H, Hu R R, Kwok H S, Huang F, Qin A J, Zhao Z J, Tang B Z. ACS Appl Mater Interfaces, 2014, 6(19): 17215-17225. doi:10.1021/am505036ahttp://dx.doi.org/10.1021/am505036a
Zhang J, Ding D X, Wei Y, Xu H. Chem Sci, 2016, 7(4): 2870-2882. doi:10.1039/c5sc04848fhttp://dx.doi.org/10.1039/c5sc04848f
0
Views
105
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution