浏览全部资源
扫码关注微信
东北林业大学 生物质材料科学与技术教育部重点实验室 哈尔滨 150040
Published:20 March 2022,
Published Online:23 December 2021,
Received:05 August 2021,
Accepted:08 October 2021
移动端阅览
安邦,徐明聪,马春慧等.纤维素纳米晶体手性复合材料:结构色的调控与应用[J].高分子学报,2022,53(03):211-226.
An Bang,Xu Ming-cong,Ma Chun-hui,et al.Tuning and Application of Structural Color of Cellulose Nanocrystals Chiral Composite Materials[J].ACTA POLYMERICA SINICA,2022,53(03):211-226.
安邦,徐明聪,马春慧等.纤维素纳米晶体手性复合材料:结构色的调控与应用[J].高分子学报,2022,53(03):211-226. DOI: 10.11777/j.issn1000-3304.2021.21215.
An Bang,Xu Ming-cong,Ma Chun-hui,et al.Tuning and Application of Structural Color of Cellulose Nanocrystals Chiral Composite Materials[J].ACTA POLYMERICA SINICA,2022,53(03):211-226. DOI: 10.11777/j.issn1000-3304.2021.21215.
结构色在自然界中扮演了重要的角色,在昆虫外骨骼、鸟类羽毛以及植物果实中广泛分布. 纤维素纳米晶体(CNCs)的水悬浮液达到一定浓度时会自组装形成左旋的手性向列液晶结构,这种手性向列结构在水分挥发后仍能保持并形成光子晶体虹彩薄膜,具有极强的手性和光子晶体的双重性质. 膜内的周期性层状结构与光线产生干涉、衍射作用,表现出复杂的虹彩色. CNCs与其他材料结合所制备的CNCs手性复合材料具有良好的力学性能,在传感器、防伪以及装饰等领域具有广阔前景. 本文讨论了CNCs手性复合材料的结构色调控以及在刺激响应、图案显示和圆偏振光学等方面的研究进展.
Structural color plays an important role in nature and is widely distributed in insect exoskeletons
bird feathers and plant fruits. Cellulose is abundant in nature and has a huge increment annually and naturally arranges into regular structures to form a structural color in some plants. The cellulose nanocrystals (CNCs) papered by sulfuric acid hydrolysis will self-assemble to form left-handed chiral nematic structures at critical concentration in water. This chiral nematic structure can be maintained in the photonic crystal iridescent film after water volatilities
like those plants
which has dual properties of extremely strong chirality and the photonic crystals. The periodic layered structure in the film has complex interference and diffraction with the light and shows complex iridescence. These artificially prepared structural colors can be tuned by changing the source of raw materials
adjusting the assembly process
and adding other substances. The preparation process and self-assembly process of CNCs are the most commonly methods to tune structural color. Because it can be flexibly adjusted
for example
tuning the structure by changing the morphology of CNCs
the hydrolysis conditions or ultrasound
additives
time and temperature during the self-assembly process. Due to its unique optical properties
CNCS chiral composites prepared by combining CNCs with other materials to improve mechanical properties have broad application prospects in sensor and anti-counterfeiting. In the existing reports
humidity response
temperature response
organic solvent and other gas response
mechanical force response and furthermore
multiple responses have been realized. And in recent years
CNCs chiral optical devices which rely on chiral nematic phase have gradually become another important research direction. In this view
the research progress of structure color control
stimuli-response
pattern display and circularly polarized optics of CNCS composites is discussed.
纤维素纳米晶体结构色手性向列自组装圆偏振
Cellulose nanocrystalsStructural colorChiral nematicSelf-assembleCircular polarization
Rånby B G. Discussions of the Faraday Society, 1951, 11: 158-164. doi:10.1039/df9511100158http://dx.doi.org/10.1039/df9511100158
Rao G, Tinkle S, Weissman D, Antonini J, Kashon M, Salmen R, Battelli L, Willard P, Hubbs A, Hoover M. J Toxicol Env Heal A, 2003, 66(15-16): 1441-1452. doi:10.1080/15287390306417http://dx.doi.org/10.1080/15287390306417
Clift M J, Foster E J, Vanhecke D, Studer D, Wick P, Gehr P, Rothen-Rutishauser B, Weder C. Biomacromolecules, 2011, 12(10): 3666-3673. doi:10.1021/bm200865jhttp://dx.doi.org/10.1021/bm200865j
O’Connor B, Berry R, Goguen R. Nanotechnology Environmental Health and Safety. Oxford, Waltham: Elsevier, 2014. 225-246. doi:10.1016/b978-1-4557-3188-6.00010-4http://dx.doi.org/10.1016/b978-1-4557-3188-6.00010-4
Roman M. Ind Biotechnol, 2015, 11(1): 25-33. doi:10.1089/ind.2014.0024http://dx.doi.org/10.1089/ind.2014.0024
Sun J, Wu Z, Ma C, Xu M, Luo S, Li W, Liu S. J Mater Chem A, 2021, 9(24): 13822-13850. doi:10.1039/d1ta02412dhttp://dx.doi.org/10.1039/d1ta02412d
Wang D C, Yu H Y, Qi D, Wu Y, Chen L, Li Z. J Am Chem Soc, 2021, 143(30): 11620-11630. doi:10.1021/jacs.1c04710http://dx.doi.org/10.1021/jacs.1c04710
Yanamala N, Farcas M T, Hatfield M K, Kisin E R, Kagan V E, Geraci C L, Shvedova A A. ACS Sustain Chem Eng, 2014, 2(7): 1691-1698. doi:10.1021/sc500153khttp://dx.doi.org/10.1021/sc500153k
Kinoshita S, Yoshioka S, Miyazaki J. Rep Prog Phys, 2008, 71(7): 175-180. doi:10.1088/0034-4885/71/7/076401http://dx.doi.org/10.1088/0034-4885/71/7/076401
Vignolini S, Rudall P J, Rowland A V, Reed A, Moyroud E, Faden R B, Baumberg J J, Glover B J, Steiner U. Proc Natl Acad Sci USA, 2012, 109(39): 15712-15715. doi:10.1073/pnas.1210105109http://dx.doi.org/10.1073/pnas.1210105109
Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin S Y, Sheltami R M. Cellulose, 2012, 19(3): 855-866. doi:10.1007/s10570-012-9684-6http://dx.doi.org/10.1007/s10570-012-9684-6
Marchessault R H, Morehead F F, Walter N M. Nature, 1959, 184(4686): 632-633. doi:10.1038/184632a0http://dx.doi.org/10.1038/184632a0
Revol J F, Bradford H, Giasson J, Marchessault R, Gray D. Int J Biol Macromol, 1992, 14(3): 170-172. doi:10.1016/s0141-8130(05)80008-xhttp://dx.doi.org/10.1016/s0141-8130(05)80008-x
Wang P X, Hamad W Y, MacLachlan M J. Nat Commun, 2016, 7: 11515. doi:10.1038/ncomms11515http://dx.doi.org/10.1038/ncomms11515
Orts W J, Godbout L, Marchessault R H, Revol J F. Macromolecules, 1998, 31(17): 5717-5725. doi:10.1021/ma9711452http://dx.doi.org/10.1021/ma9711452
Hu Y, Abidi N. Langmuir, 2016, 32(38): 9863-9872. doi:10.1021/acs.langmuir.6b02861http://dx.doi.org/10.1021/acs.langmuir.6b02861
Korolovych V F, Cherpak V, Nepal D, Ng A, Shaikh N R, Grant A, Xiong R, Bunning T J, Tsukruk V V. Polymer, 2018, 145: 334-347. doi:10.1016/j.polymer.2018.04.064http://dx.doi.org/10.1016/j.polymer.2018.04.064
Natarajan B, Krishnamurthy A, Qin X, Emiroglu C D, Forster A, Foster E J, Weder C, Fox D M, Keten S, Obrzut J, Gilman J W. Adv Funct Mater, 2018, 28(26): 1800032. doi:10.1002/adfm.201800032http://dx.doi.org/10.1002/adfm.201800032
Hirai A, Inui O, Horii F, Tsuji M. Langmuir, 2009, 25(1): 497-502. doi:10.1021/la802947mhttp://dx.doi.org/10.1021/la802947m
Dong X M, Revol J F, Gray D G. Cellulose, 1998, 5(1): 19-32. doi:10.1023/a:1009260511939http://dx.doi.org/10.1023/a:1009260511939
Araki J, Kuga S. Langmuir, 2001, 17(15): 4493-4496. doi:10.1021/la0102455http://dx.doi.org/10.1021/la0102455
Dong X M, Kimura T, Revol J F, Gray D G. Langmuir, 1996, 12(8): 2076-2082. doi:10.1021/la950133bhttp://dx.doi.org/10.1021/la950133b
Abitbol T, Kam D, Levi-Kalisman Y, Gray D G, Shoseyov O. Langmuir, 2018, 34(13): 3925-3933. doi:10.1021/acs.langmuir.7b04127http://dx.doi.org/10.1021/acs.langmuir.7b04127
Pan J, Hamad W, Straus S K. Macromolecules, 2010, 43(8): 3851-3858. doi:10.1021/ma902383khttp://dx.doi.org/10.1021/ma902383k
Giese M, Khan M K, Hamad W Y, MacLachlan M J. ACS Macro Lett, 2013, 2(9): 818-821. doi:10.1021/mz4003722http://dx.doi.org/10.1021/mz4003722
Yao K, Meng Q, Bulone V, Zhou Q. Adv Mater, 2017, 29(28): 1701323. doi:10.1002/adma.201701323http://dx.doi.org/10.1002/adma.201701323
Gao Y, Jin Z. ACS Sustain Chem Eng, 2018, 6(5): 6192-6202. doi:10.1021/acssuschemeng.7b04899http://dx.doi.org/10.1021/acssuschemeng.7b04899
Bardet R, Belgacem N, Bras J. ACS Appl Mater Interfaces, 2015, 7(7): 4010-4018. doi:10.1021/am506786thttp://dx.doi.org/10.1021/am506786t
Wan H, Li X, Zhang L, Li X, Liu P, Jiang Z, Yu Z Z. ACS Appl Mater Interfaces, 2018, 10(6): 5918-5925. doi:10.1021/acsami.7b19375http://dx.doi.org/10.1021/acsami.7b19375
Walters C M, Boott C E, Nguyen T D, Hamad W Y, MacLachlan M J. Biomacromolecules, 2020, 21(3): 1295-1302. doi:10.1021/acs.biomac.0c00056http://dx.doi.org/10.1021/acs.biomac.0c00056
Sun C, Zhu D, Jia H, Lei K, Zheng Z, Wang X. ACS Appl Mater Interfaces, 2019, 11(42): 39192-39200. doi:10.1021/acsami.9b14201http://dx.doi.org/10.1021/acsami.9b14201
Qu D, Chu G, Martin P, Vasilyev G, Vilensky R, Zussman E. ACS Appl Mater Interfaces, 2019, 11(43): 40443-40450. doi:10.1021/acsami.9b12106http://dx.doi.org/10.1021/acsami.9b12106
He Y D, Zhang Z L, Xue J, Wang X H, Song F, Wang X L, Zhu L L, Wang Z Y. ACS Appl Mater Interfaces, 2018, 10(6): 5805-5811. doi:10.1021/acsami.7b18440http://dx.doi.org/10.1021/acsami.7b18440
Xu M, Li W, Ma C, Yu H, Wu Y, Wang Y, Chen Z, Li J, Liu S X. J Mater Chem C, 2018, 6(20): 5391-5400. doi:10.1039/c8tc01321ghttp://dx.doi.org/10.1039/c8tc01321g
Mu X, Gray D G. Langmuir, 2014, 30(31): 9256-9260. doi:10.1021/la501741rhttp://dx.doi.org/10.1021/la501741r
Zhang F, Wang D, Qin H, Feng L, Liang X, Qing G. ACS Appl Mater Interfaces, 2019, 11(14): 13114-13122. doi:10.1021/acsami.9b00471http://dx.doi.org/10.1021/acsami.9b00471
Guidetti G, Atifi S, Vignolini S, Hamad W Y. Adv Mater, 2016, 28(45): 10042-10047. doi:10.1002/adma.201603386http://dx.doi.org/10.1002/adma.201603386
Liu P, Guo X, Nan F, Duan Y, Zhang J. ACS Appl Mater Interfaces, 2017, 9(3): 3085-3092. doi:10.1021/acsami.6b12953http://dx.doi.org/10.1021/acsami.6b12953
Nguyen T-D, Hamad W Y, MacLachlan M J. Chem Commun, 2013, 49(96): 11296-11298. doi:10.1039/c3cc47337fhttp://dx.doi.org/10.1039/c3cc47337f
Tran A, Hamad W Y, MacLachlan M J. Langmuir, 2018, 34(2): 646-652. doi:10.1021/acs.langmuir.7b03920http://dx.doi.org/10.1021/acs.langmuir.7b03920
Tran A, Hamad W Y, MacLachlan M J. ACS Appl Nano Mater, 2018, 1(7): 3098-3104. doi:10.1021/acsanm.8b00947http://dx.doi.org/10.1021/acsanm.8b00947
Liu D, Wang S, Ma Z, Tian D, Gu M, Lin F. RSC Adv, 2014, 4(74): 39322-39331. doi:10.1039/c4ra06268jhttp://dx.doi.org/10.1039/c4ra06268j
Beck S, Bouchard J, Chauve G, Berry R. Cellulose, 2013, 20(3): 1401-1411. doi:10.1007/s10570-013-9888-4http://dx.doi.org/10.1007/s10570-013-9888-4
Ritcey A M, Charlet G, Gray D G. Can J Chem, 1988, 66(9): 2229-2233. doi:10.1139/v88-354http://dx.doi.org/10.1139/v88-354
Ritcey A M, Gray D G. Macromolecules, 1988, 21(5): 1251-1255. doi:10.1021/ma00183a013http://dx.doi.org/10.1021/ma00183a013
Guo J X, Gray D G. Macromolecules, 1989, 22(5): 2086-2090. doi:10.1021/ma00195a012http://dx.doi.org/10.1021/ma00195a012
Revol J F, Godbout j D L, Gray D G. US patent, US5629055A. 1997
Chen Q, Liu P, Nan F, Zhou L, Zhang J. Biomacromolecules, 2014, 15(11): 4343-4350. doi:10.1021/bm501355xhttp://dx.doi.org/10.1021/bm501355x
Guo J, Guo X, Wang S, Yin Y. Carbohyd Polym, 2016, 135: 248-255. doi:10.1016/j.carbpol.2015.08.068http://dx.doi.org/10.1016/j.carbpol.2015.08.068
Beck S, Bouchard J, Berry R. Biomacromolecules, 2011, 12(1): 167-172. doi:10.1021/bm1010905http://dx.doi.org/10.1021/bm1010905
Frka-Petesic B, Guidetti G, Kamita G, Vignolini S. Adv Mater, 2017, 29(32): 1701469. doi:10.1002/adma.201701469http://dx.doi.org/10.1002/adma.201701469
Sugiyama J, Chanzy H, Maret G. Macromolecules, 1992, 25(16): 4232-4234. doi:10.1021/ma00042a032http://dx.doi.org/10.1021/ma00042a032
De France K, Zeng Z, Wu T, Nystrom G. Adv Mater, 2020, 33(28): 2000657. doi:10.1002/adma.202000657http://dx.doi.org/10.1002/adma.202000657
De France K J, Yager K G, Hoare T, Cranston E D. Langmuir, 2016, 32(30): 7564-7571. doi:10.1021/acs.langmuir.6b01827http://dx.doi.org/10.1021/acs.langmuir.6b01827
Kimura F, Kimura T, Tamura M, Hirai A, Ikuno M, Horii F. Langmuir, 2005, 21(5): 2034-2037. doi:10.1021/la0475728http://dx.doi.org/10.1021/la0475728
Frka-Petesic B, Radavidson H, Jean B, Heux L. Adv Mater, 2017, 29(11): 1606208. doi:10.1002/adma.201606208http://dx.doi.org/10.1002/adma.201606208
Habibi Y, Heim T, Douillard R. J Polym Sci, Part B: Polym Phys, 2008, 46(14): 1430-1436. doi:10.1002/polb.21479http://dx.doi.org/10.1002/polb.21479
Kadimi A, Benhamou K, Ounaies Z, Magnin A, Dufresne A, Kaddami H, Raihane M. ACS Appl Mater Interfaces, 2014, 6(12): 9418-9425. doi:10.1021/am501808hhttp://dx.doi.org/10.1021/am501808h
Kamita G, Frka-Petesic B, Allard A, Dargaud M, King K, Dumanli A G, Vignolini S. Adv Opt Mater, 2016, 4(12): 1950-1954. doi:10.1002/adom.201600451http://dx.doi.org/10.1002/adom.201600451
Ebeling T, Paillet M, Borsali R, Diat O, Dufresne A, Cavaille J Y, Chanzy H. Langmuir, 1999, 15(19): 6123-6126. doi:10.1021/la990046+http://dx.doi.org/10.1021/la990046+
Park J H, Noh J, Schütz C, Salazar-Alvarez G, Scalia G, Bergström L, Lagerwall J. Chem Eur J Chem, 2014, 15(7): 1477-1484. doi:10.1002/cphc.201400062http://dx.doi.org/10.1002/cphc.201400062
Ličen M, Majaron B, Noh J, Schütz C, Bergström L, Lagerwall J, Drevenšek-Olenik I. Cellulose, 2016, 23(6): 3601-3609. doi:10.1007/s10570-016-1066-zhttp://dx.doi.org/10.1007/s10570-016-1066-z
Aalbers G J W, Boott C E, D’Acierno F, Lewis L, Ho J, Michal C A, Hamad W Y, MacLachlan M J. Biomacromolecules, 2019, 20(7): 2779-2785. doi:10.1021/acs.biomac.9b00533http://dx.doi.org/10.1021/acs.biomac.9b00533
Dong Z, Zhang N, Wang Y, Wu J, Gan Q, Li W. Adv Funct Mater, 2019, 29(43): 1904453. doi:10.1002/adfm.201904453http://dx.doi.org/10.1002/adfm.201904453
Song W, Lee J K, Gong M S, Heo K, Chung W J, Lee B Y. ACS Appl Mater Interfaces, 2018, 10(12): 10353-10361. doi:10.1021/acsami.7b19738http://dx.doi.org/10.1021/acsami.7b19738
Sun C, Zhu D, Jia H, Yang C, Zheng Z, Wang X. ACS Appl Mater Interfaces, 2020, 12(23): 26455-26463. doi:10.1021/acsami.0c04785http://dx.doi.org/10.1021/acsami.0c04785
Dai S, Prempeh N, Liu D, Fan Y, Gu M, Chang Y. Carbohyd Polym, 2017, 174: 531-539. doi:10.1016/j.carbpol.2017.06.098http://dx.doi.org/10.1016/j.carbpol.2017.06.098
Zhao Y, Gao G, Liu D, Tian D, Zhu Y, Chang Y. Carbohyd Polym, 2017, 174: 39-47. doi:10.1016/j.carbpol.2017.06.059http://dx.doi.org/10.1016/j.carbpol.2017.06.059
Su S, Jing G, Zhang M, Liu B, Zhu X, Wang B, Fu M, Zhu L, Cheng J, Guo Y. Sens Actuators B Chem, 2019, 282: 60-68. doi:10.1016/j.snb.2018.11.035http://dx.doi.org/10.1016/j.snb.2018.11.035
Kose O, Tran A, Lewis L, Hamad W Y, MacLachlan M J. Nat Commun, 2019, 10(1): 510. doi:10.1038/s41467-019-08351-6http://dx.doi.org/10.1038/s41467-019-08351-6
Kose O, Boott C E, Hamad W Y, MacLachlan M J. Macromolecules, 2019, 52(14): 5317-5324. doi:10.1021/acs.macromol.9b00863http://dx.doi.org/10.1021/acs.macromol.9b00863
Li W, Xu M, Ma C, Liu Y, Zhou J, Chen Z, Wang Y, Yu H, Li J, Liu S. ACS Appl Mater Interfaces, 2019, 11(26): 23512-23519. doi:10.1021/acsami.9b05941http://dx.doi.org/10.1021/acsami.9b05941
Xu M, Ma C, Zhou J, Liu Y, Wu X, Luo S, Li W, Yu H, Wang Y, Chen Z, Li J, Liu S. J Mater Chem C, 2019, 7(44): 13794-13802. doi:10.1039/c9tc04144chttp://dx.doi.org/10.1039/c9tc04144c
Xu M, Wu X, Yang Y, Ma C, Li W, Yu H, Chen Z, Li J, Zhang K, Liu S. ACS Nano, 2020, 14(9): 11130-11139. doi:10.1021/acsnano.0c02060http://dx.doi.org/10.1021/acsnano.0c02060
Fernandes S N, Almeida P L, Monge N, Aguirre L E, Reis D, de Oliveira C L P, Neto A M F, Pieranski P, Godinho M H. Adv Mater, 2017, 29(2): 1603560. doi:10.1002/adma.201603560http://dx.doi.org/10.1002/adma.201603560
Hiratani T, Hamad W Y, MacLachlan M J. Adv Mater, 2017, 29(13): 1606083. doi:10.1002/adma.201606083http://dx.doi.org/10.1002/adma.201606083
Chen J, Xu L, Lin X, Chen R, Yu D, Hong W, Zheng Z, Chen X. J Mater Chem C, 2018, 6(29): 7767-7775. doi:10.1039/c8tc02666ahttp://dx.doi.org/10.1039/c8tc02666a
Zheng H, Li W, Li W, Wang X, Tang Z, Zhang S X A, Xu Y. Adv Mater, 2018, 30(13): 1705948. doi:10.1002/adma.201705948http://dx.doi.org/10.1002/adma.201705948
0
Views
223
下载量
9
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution