浏览全部资源
扫码关注微信
北京科技大学材料科学与工程学院 北京 100083
Published:20 May 2022,
Published Online:10 March 2022,
Received:21 December 2021,
Accepted:24 January 2022
移动端阅览
胡华坤,薛文东,李勇等.锂离子电池安全性保护措施研究进展[J].高分子学报,2022,53(05):457-473.
Hua-kun Hu,Xue Wen-dong,Li Yong,et al.Safety Protection Measures for Lithium Ion Batteries: An Overview and Outlook[J].ACTA POLYMERICA SINICA,2022,53(05):457-473.
胡华坤,薛文东,李勇等.锂离子电池安全性保护措施研究进展[J].高分子学报,2022,53(05):457-473. DOI: 10.11777/j.issn1000-3304.2021.21392.
Hua-kun Hu,Xue Wen-dong,Li Yong,et al.Safety Protection Measures for Lithium Ion Batteries: An Overview and Outlook[J].ACTA POLYMERICA SINICA,2022,53(05):457-473. DOI: 10.11777/j.issn1000-3304.2021.21392.
锂离子电池最常见的安全性问题主要出现在电解液和隔膜. 热失控是导致锂离子电池产生安全事故的主要原因. 改变电解液组分、增加电解液组分、引入阻燃添加剂等措施,能够有效缓解并抑制热效应,降低可燃性. 改性聚烯烃隔膜是提高隔膜热稳定性的简单方法,使用高熔点的聚合物或无机材料对隔膜进行修饰,其本质类似于给隔膜穿上一层“外骨骼”,用来抵御热冲击和机械冲击. 隔膜在保证具备基本功能的同时,还要更加环保,逐步转向可持续的生物质材料. 本文针对近年来锂离子电池的安全保护措施进行了综述,主要包括近几年内部保护措施和外部保护措施的相关研究和探索方面的成果. 详细介绍了最近报道的不易燃电解液、阻燃添加剂、隔膜、正极材料、限流设备和电池管理系统的作用机理和研究进展,并展望了未来锂离子电池安全性研究的发展方向.
The most common safety problems of lithium-ion batteries mainly exist in electrolyte and diaphragm. Thermal runaway is the main cause of safety accidents of lithium-ion batteries. Changing electrolyte composition
increasing electrolyte composition
and introducing flame retardant additives can effectively alleviate and inhibit thermal effect and reduce flammability. Modification of polyolefin membrane is a simple method for improving the thermal stability of the membrane. The membrane is modified with high melting point polymer or inorganic materials. Its essence is similar to putting an "exoskeleton" on the membrane to resist thermal shock and mechanical shock. While ensuring the basic functions
the diaphragm should be more environmentally friendly and gradually turn to sustainable biomass materials. This review summarizes the safety protection measures of lithium-ion battery in recent years
mainly including the research and exploration results of internal and external protection measures in recent years. The action mechanism and research progress of nonflammable electrolyte
flame retardant additives
diaphragm
cathode materials
current limiting equipment
and battery management system reported recently are discussed in detail
and the development direction of lithium-ion battery safety research in the future is prospected.
锂离子电池安全性隔膜电解液保护措施
Lithium ion batterySafetySeparatorElectrolyteProtective measures
Yang Y J, Wu S X, Zhang Y P, Liu C B, Luo D, Lin Z. Chem Eng J, 2021, 406: 126807. doi:10.1016/j.cej.2020.126807http://dx.doi.org/10.1016/j.cej.2020.126807
Yu X W, Manthiram A. Energy Storage Mater, 2021, 34: 282-300. doi:10.1016/j.ensm.2020.10.006http://dx.doi.org/10.1016/j.ensm.2020.10.006
Xu K. Chem Rev, 2004, 104(10): 4303-4417. doi:10.1021/cr030203ghttp://dx.doi.org/10.1021/cr030203g
Wang Q S, Ping P, Zhao X J, Chu G Q, Sun J H, Chen C H. J Power Sources, 2012, 208: 210-224. doi:10.1016/j.jpowsour.2012.02.038http://dx.doi.org/10.1016/j.jpowsour.2012.02.038
Huang B, Pan Z F, Su XY, An L. J Power Sources, 2018, 339: 274-286. doi:10.1016/j.jpowsour.2018.07.116http://dx.doi.org/10.1016/j.jpowsour.2018.07.116
Ren D S, Feng X N, Liu L S, Hsu H J, Lu L G, Wang L, He X M. Energy Storage Mater, 2021, 34: 563-573. doi:10.1016/j.ensm.2020.10.020http://dx.doi.org/10.1016/j.ensm.2020.10.020
Zhang Xiaosong(张小颂), Xia Yonggao(夏永高). Energy Storage Science and Technology(储能科学与技术), 2018, 7(6): 1016-1029
Ruiz V, Pfrang A, Kriston A, Omar N, Vanden B P, Boon-Brett L. Renew Sust Energy Rev, 2018, 81: 1427-1452. doi:10.1016/j.rser.2017.05.195http://dx.doi.org/10.1016/j.rser.2017.05.195
Waldmann T, Hogg B I, Wohlfahrt-Mehrens M. J Power Sources, 2018, 384: 107-124. doi:10.1016/j.jpowsour.2018.02.063http://dx.doi.org/10.1016/j.jpowsour.2018.02.063
Abada S, Marlair G, Lecocq A, Petit M, Sauvant-Moynot V, Huet F. J Power Sources, 2016, 306: 178-192. doi:10.1016/j.jpowsour.2015.11.100http://dx.doi.org/10.1016/j.jpowsour.2015.11.100
Huang J Y, Liu J X, Kang X L, Yu Z X, Xu T T, Qiu W H. J Power Sources, 2009, 189(1): 458-461. doi:10.1016/j.jpowsour.2008.12.088http://dx.doi.org/10.1016/j.jpowsour.2008.12.088
Ringsby A J, Fong K D, Self J, Bergstrom H K, McCloskey B D, Persson K A. J Electrochem Soc, 2021, 168(8): 080501. doi:10.1149/1945-7111/ac1735http://dx.doi.org/10.1149/1945-7111/ac1735
Ping P, Wang Q S, Sun J H, Feng X Y, Chen C H. J Power Sources, 2011, 196(2): 776-783. doi:10.1016/j.jpowsour.2010.07.064http://dx.doi.org/10.1016/j.jpowsour.2010.07.064
Hirata K, Morita Y, Kawase T, Sumida Y. Electrochim Acta, 2019, 303: 49-55. doi:10.1016/j.electacta.2019.02.032http://dx.doi.org/10.1016/j.electacta.2019.02.032
Kartha T R, Mallik B S. J Phys Chem B, 2021, 125(26): 7231-7240. doi:10.1021/acs.jpcb.1c04486http://dx.doi.org/10.1021/acs.jpcb.1c04486
Pohl B, Hiller M M, Seidel S M, Grunebaum M, Wiemhofer H D. J Power Sources, 2015, 274: 629-635. doi:10.1016/j.jpowsour.2014.10.080http://dx.doi.org/10.1016/j.jpowsour.2014.10.080
Haregewoin A M, Wotango A S, Hwang B J. Energy Environ Sci, 2016, 9(6): 1955-1988. doi:10.1039/c6ee00123hhttp://dx.doi.org/10.1039/c6ee00123h
Liu K, Liu Y Y, Lin D C, Pei A, Cui Y. Sci Adv, 2018, 4(6): eaas9820. doi:10.1126/sciadv.aas9820http://dx.doi.org/10.1126/sciadv.aas9820
Zhang L, Huang Y H, Fan H, Wang H F. ACS Appl Energy Mater, 2019, 2(2): 1363-1370. doi:10.1021/acsaem.8b01942http://dx.doi.org/10.1021/acsaem.8b01942
Takeuchi S, Yano S, Fukutsuka T, Miyazaki K, Abe T. J Electrochem Soc, 2012, 159(12): A2089-A2091. doi:10.1149/2.002301jeshttp://dx.doi.org/10.1149/2.002301jes
Shi P C, Zheng H, Liang X, Sun Y, Cheng S, Chen C H, Xiang H F. Chem Commun, 2018, 54(35): 4453-4456. doi:10.1039/c8cc00994ehttp://dx.doi.org/10.1039/c8cc00994e
Liu X W, Jiang X Y, Zhong F P, Feng X M, Chen W H, Ai X P, Yang H X, Cao Y L. ACS Appl Mater Interfaces, 2019, 11(31): 27833-7838. doi:10.1021/acsami.9b07614http://dx.doi.org/10.1021/acsami.9b07614
Yang H J, Guo C, Chen J H, Naveed A, Yang J, Nuli Y, Wang J L. Angew Chem Int Ed, 2019, 58(3): 791-795. doi:10.1002/anie.201811291http://dx.doi.org/10.1002/anie.201811291
Jiang L H, Liang, C, Li H, Wang Q S, Sun J H. ACS Appl Energy Mater, 2020, 3(2): 1719-1729. doi:10.1021/acsaem.9b02188http://dx.doi.org/10.1021/acsaem.9b02188
Wei M, Liang C, Li R, He Y L, Rong L, Song X Y, Li J S. Int J Electrochem Sci, 2020, 15(11): 11265-11274
Colbin L O S, Mogensen R, Buckel A, Wang Y L, Naylor A J, Kullgren J, Younesi R. Adv Mater Interfaces, 2021, 8(23): 2101135. doi:10.1002/admi.202101135http://dx.doi.org/10.1002/admi.202101135
Yang H J, Li Q Y, Guo C, Naveed A, Yang J, Nuli Y, Wang J L. Chem Commun, 2018, 54(33): 4132-4135. doi:10.1039/c7cc09942hhttp://dx.doi.org/10.1039/c7cc09942h
Chen S R, Zheng J M, Yu L, Ren X D, Engelhard M H, Niu C J, Lee H, Xu W, Xiao J, Liu J, Zhang J G. Joule, 2018, 2(8): 1548-1558. doi:10.1016/j.joule.2018.05.002http://dx.doi.org/10.1016/j.joule.2018.05.002
Naveed A, Yang H, Yang J, Nuli Y, Wang J. Angew Chem Int Ed, 2019, 58 (9): 2760-2764. doi:10.1002/anie.201813223http://dx.doi.org/10.1002/anie.201813223
Wang Q S, Sun J H, Yao X L, Chen C H. Electrochem Solid State Lett, 2005, 8(9): A467-A470. doi:10.1149/1.1993389http://dx.doi.org/10.1149/1.1993389
Wang Q S, Sun J H, Chen C H. J Power Sources, 2006, 162(2): 1363-1366. doi:10.1016/j.jpowsour.2006.08.027http://dx.doi.org/10.1016/j.jpowsour.2006.08.027
Shim E G, Nam T H, Kim J G, Kim H S, Moon S I. J Power Sources, 2008, 175(1): 533-539. doi:10.1016/j.jpowsour.2007.08.098http://dx.doi.org/10.1016/j.jpowsour.2007.08.098
Nam T H, Shim E G, Kim J G, Kim H S, Moon S I. J Power Sources, 2008, 180(1): 561-567. doi:10.1016/j.jpowsour.2008.01.061http://dx.doi.org/10.1016/j.jpowsour.2008.01.061
Tsujikawa T, Yabuta K, Matsushita T, Matsushima T, Hayashi K, Arakawa M. J Power Sources, 2009, 189(1): 429-434. doi:10.1016/j.jpowsour.2009.02.010http://dx.doi.org/10.1016/j.jpowsour.2009.02.010
Xia L, Xia Y, Liu Z. J Power Sources, 2015, 278: 190-196. doi:10.1016/j.jpowsour.2014.11.140http://dx.doi.org/10.1016/j.jpowsour.2014.11.140
Yuan Y, Wu F, Chen G, Bai Y, Wu C. J Energy Chem, 2019, 37: 197-203. doi:10.1016/j.jechem.2019.03.014http://dx.doi.org/10.1016/j.jechem.2019.03.014
Gu YX, Fang S H, Yang L, Hirano S I. J Mater Chem A, 2021, 9(27): 15363-15372. doi:10.1039/d1ta01088chttp://dx.doi.org/10.1039/d1ta01088c
Huang T, Zheng X Z, Fang G F, Pan Y, Wang W G, Wu M X. RSC Adv, 2017, 7(75): 47775-47780. doi:10.1039/c7ra09416ghttp://dx.doi.org/10.1039/c7ra09416g
Huang T, Zheng X Z, Wang W G, Pan Y, Fang G H, Wu M X. Mater Chem Phys, 2017, 196: 310-314. doi:10.1016/j.matchemphys.2017.05.005http://dx.doi.org/10.1016/j.matchemphys.2017.05.005
Xu K, Ding M S, Zhang S S, Allen J L, Jow T R. J Electrochem Soc, 2002, 149(5): A622-A626. doi:10.1149/1.1467946http://dx.doi.org/10.1149/1.1467946
Lewandowski A, Swiderska-Mocek A. J Power Sources, 2009, 194(2): 601-609. doi:10.1016/j.jpowsour.2009.06.089http://dx.doi.org/10.1016/j.jpowsour.2009.06.089
Martins V L, Torresi R M. Curr Opin Electrochem, 2018, 9: 26-32. doi:10.1016/j.coelec.2018.03.005http://dx.doi.org/10.1016/j.coelec.2018.03.005
Zhou W J, Zhang M, Kong X Y, Zhao M J, Zimmermann L L, Martin R M, Lyeth B G, Srinivasan V J. Sci Adv, 2021, 8(13): 2004490. doi:10.1002/advs.202004490http://dx.doi.org/10.1002/advs.202004490
Mun J, Yim T, Park J H, Ryu J H, Lee S Y, Kim Y G, Oh S M. Sci Rep, 2014, 4: 5802. doi:10.1038/srep05802http://dx.doi.org/10.1038/srep05802
Niedzicki L, Zukowska G Z, Bukowska M, Szczecinski P, Grugeon S, Laruelle S, Armand M, Panero S, Scrosati B, Marcinek M, Wieczorek W. Electrochim Acta, 2010, 55(4): 1450-1454. doi:10.1016/j.electacta.2009.05.008http://dx.doi.org/10.1016/j.electacta.2009.05.008
Pyschik M, Kraft V, Passerini S, Winter M, Nowak S. Electrochim Acta, 2014, 130: 426-430. doi:10.1016/j.electacta.2014.03.033http://dx.doi.org/10.1016/j.electacta.2014.03.033
Salem N, Abu-Lebdeh Y. J Electrochem Soc, 2014, 161(10): A1593-A1601. doi:10.1149/2.0361410jeshttp://dx.doi.org/10.1149/2.0361410jes
Nakagawa H, Fujino Y, Kozono S, Katayama Y, Nukuda T, Sakaebe H, Matsumoto H, Tatsumi K. J Power Sources, 2007, 174(2): 1021-1026. doi:10.1016/j.jpowsour.2007.06.133http://dx.doi.org/10.1016/j.jpowsour.2007.06.133
Papovic S, Cvjeticanin N, Gadzuric S, Bester-Rogac M, Vranes M. Phys Chem Chem Phys, 2017, 19(41): 28139-28152
Kinoshita S, Kotato M, Sakata Y, Ue M, Watanabe Y, Morimoto H, Tobishima S. J Power Sources, 2008, 183(2): 755-760. doi:10.1016/j.jpowsour.2008.05.035http://dx.doi.org/10.1016/j.jpowsour.2008.05.035
Olschewski M, Gustus R, Marschewski M, Hofft O, Endres F. Phys Chem Chem Phys, 2014, 16(47): 25969-25977. doi:10.1039/c4cp03091ehttp://dx.doi.org/10.1039/c4cp03091e
Srour H, Chancelier L, Bolimowska E, Gutel T, Mailley S, Rouault H, Santini C C. J Appl Electrochem, 2016, 46(2): 149-155. doi:10.1007/s10800-015-0905-1http://dx.doi.org/10.1007/s10800-015-0905-1
Dilasari B, Jung Y, Kim G, Kwon K. ACS Sustain Chem Eng, 2016, 4(2): 491-496. doi:10.1021/acssuschemeng.5b00987http://dx.doi.org/10.1021/acssuschemeng.5b00987
Balakrishnan P G, Ramesh R, Kumar T P. J Power Sources, 2006, 155(2): 401-414
Xia Y, Li Y, Xiao Z, Zhou X H, Wang G G, Zhang J, Gan Y P, Huang H, Liang C, Zhang W K. Ionics, 2020, 26(1): 173-182. doi:10.1007/s11581-019-03206-yhttp://dx.doi.org/10.1007/s11581-019-03206-y
Zhang X Y, Sun Q W, Zhen C, Niu Y H, Han Y P, Zeng G F, Chen D J, Feng C, Chen N, Lv W Q, He W D. Energy Storage Mater, 2021, 37: 628-647. doi:10.1016/j.ensm.2021.02.042http://dx.doi.org/10.1016/j.ensm.2021.02.042
Woo J J, Nam S H, Seo S J, Yun S H, Kim W B, Xu T W, Moon S H. Electrochem Commun, 2013, 35: 68-71. doi:10.1016/j.elecom.2013.08.005http://dx.doi.org/10.1016/j.elecom.2013.08.005
Lee J Y, Shin S H, Moon S H. Korean J Chem Eng, 2016, 33(1): 285-289. doi:10.1007/s11814-015-0119-6http://dx.doi.org/10.1007/s11814-015-0119-6
Mu X W, Zhou X, Wang W, Xiao Y L, Liao C, Han L F, Kan Y C, Song L. Chem Eng J, 2021, 408: 126946. doi:10.1016/j.cej.2020.126946http://dx.doi.org/10.1016/j.cej.2020.126946
Liu K, Liu W, Qiu Y C, Kong B A, Sun Y M, Chen Z, Zhuo D, Lin D C, Cui Y. Sci Adv, 2017, 3(1): e1601978. doi:10.1126/sciadv.1601978http://dx.doi.org/10.1126/sciadv.1601978
Zhang B, Wang Q F, Zhang J J, Ding G L, Xu G J, Liu Z H, Cui G L. Nano Energy, 2014, 10: 277-287. doi:10.1016/j.nanoen.2014.10.001http://dx.doi.org/10.1016/j.nanoen.2014.10.001
Han X Q, Han P X, Yao J H, Zhang S, Cao X Y, Xiong J W, Zhang J N, Cui G L. Electrochim Acta, 2016, 196: 603-610. doi:10.1016/j.electacta.2016.02.185http://dx.doi.org/10.1016/j.electacta.2016.02.185
Shayapat J, Chung O H, Park J S. Electrochim Acta, 2015, 170: 110-121. doi:10.1016/j.electacta.2015.04.142http://dx.doi.org/10.1016/j.electacta.2015.04.142
Ul Arifeen W, Choi J, Yoo K, Shim J, Ko T J. Chem Eng J, 2021, 417: 128075. doi:10.1016/j.cej.2020.128075http://dx.doi.org/10.1016/j.cej.2020.128075
Cao L Y, An P, Xu Z W, Huang J F. J Electroanal Chem, 2016, 767: 34-39. doi:10.1016/j.jelechem.2016.01.041http://dx.doi.org/10.1016/j.jelechem.2016.01.041
Li M N, Zhang Z J, Yin Y T, Guo W C, Bai Y G, Zhang F, Zhao B, Shen F, Han X G. ACS Appl Mater Interfaces, 2020, 12(3): 3610-3616. doi:10.1021/acsami.9b19049http://dx.doi.org/10.1021/acsami.9b19049
Jiang W, Liu Z H, Kong Q S, Yao J H, Zhang C J, Han P X, Cui G L. Solid State Ion, 2013, 232: 44-48. doi:10.1016/j.ssi.2012.11.010http://dx.doi.org/10.1016/j.ssi.2012.11.010
Han P X, Zhang B, Huang C S, Gu L, Li H, Cui G L. Electrochem Commun, 2014, 44: 70-73. doi:10.1016/j.elecom.2014.05.001http://dx.doi.org/10.1016/j.elecom.2014.05.001
Han P X, Han X Q, Yao J H, Liu Z H, Cao X Y, Cui G L. Electrochem Commun, 2015, 61: 84-88. doi:10.1016/j.elecom.2015.10.009http://dx.doi.org/10.1016/j.elecom.2015.10.009
Chun S J, Choi E S, Lee E H, Kim J H, Lee S Y, Lee S Y. J Mater Chem, 2012, 22(32): 16618-16626. doi:10.1039/c2jm32415fhttp://dx.doi.org/10.1039/c2jm32415f
Zhang Z, Lai Y, Zhang Z, Zhang K, Zhang Z A, Zhang K, Li J E. Electrochim Acta, 2014, 129: 55-61. doi:10.1016/j.electacta.2014.02.077http://dx.doi.org/10.1016/j.electacta.2014.02.077
Song Y Z, Sheng L, Wang L, Xu H, He X M. Electrochem Commun, 2021, 124: 106948. doi:10.1016/j.elecom.2021.106948http://dx.doi.org/10.1016/j.elecom.2021.106948
Cherian B M, Leao A L, de Souza S F, Costa L M M, de Olyveira G M, Kottaisamy M, Nagarajan E R, Thomas S. Carbohydr Polym, 2011, 86(4): 1790-1798. doi:10.1016/j.carbpol.2011.07.009http://dx.doi.org/10.1016/j.carbpol.2011.07.009
Chun S J, Choi E S, Lee E H, Kim J H, Lee S Y. J Mater Chem, 2012, 22(32): 16618-16626. doi:10.1039/c2jm32415fhttp://dx.doi.org/10.1039/c2jm32415f
Zhang J J, Liu Z H, Kong Q S, Zhang C J, Pang S P, Yue L P, Wang X J, Yao J H, Cui G L. ACS Appl Mater Interfaces, 2013, 5(1): 128-134. doi:10.1021/am302290nhttp://dx.doi.org/10.1021/am302290n
Weng B C, Xu F H, Alcoutlabi M, Mao Y B, Lozano K. Cellulose, 2015, 22(2): 1311-1320. doi:10.1007/s10570-015-0564-8http://dx.doi.org/10.1007/s10570-015-0564-8
Delaporte N, Perea A, Paolella A, Dube J, Vigeant M J, Demers H, Clement D, Zhu W, Gariepy V, Zaghib K. J Power Sources, 2021, 506: 230189. doi:10.1016/j.jpowsour.2021.230189http://dx.doi.org/10.1016/j.jpowsour.2021.230189
Zhang J J, Yue L P, Kong Q S, Liu Z H, Zhou X H, Zhang C J, Xu Q, Zhang B, Ding G L, Qin B S, Duan Y L, Wang Q F, Yao J H, Cui G L, Chen L Q. Sci Rep, 2014, 4: 3935. doi:10.1038/srep03935http://dx.doi.org/10.1038/srep03935
Choi J A, Kim S H, Kim D W. J Power Sources, 2010, 195(18): 6192-6196. doi:10.1016/j.jpowsour.2009.11.020http://dx.doi.org/10.1016/j.jpowsour.2009.11.020
Shi C, Zhang P, Chen L X, Yang P T, Zhao J B. J Power Sources, 2014, 270: 547-553. doi:10.1016/j.jpowsour.2014.07.142http://dx.doi.org/10.1016/j.jpowsour.2014.07.142
Jia S J, Long J T, Li J W, Yang S H, Huang K L, Yang N, Liang Y H, Xiao J. J Mater Sci, 2020, 55(30): 14907-14921. doi:10.1007/s10853-020-05051-1http://dx.doi.org/10.1007/s10853-020-05051-1
Song Y H, Wu K J, Zhang T W, Lu L L, Guan Y, Zhou F, Wang X X, Yin Y C, Tan Y H, Li F, Tian T, Ni Y, Yao H B, Yu S H. Adv Mater, 2019, 31(51): 1905711. doi:10.1002/adma.201905711http://dx.doi.org/10.1002/adma.201905711
Gao H L, Chen S M, Mao L B, Song Z Q, Yao H B, Colfen H, Luo X S, Zhang F, Pan Z, Meng Y F, Ni Y, Yu S H. Nat Commun, 2017, 8: 287. doi:10.1038/s41467-017-00392-zhttp://dx.doi.org/10.1038/s41467-017-00392-z
Wu K J, Zheng Z J, Zhang S S, He L H, Yao H B, Gong X L, Ni Y. Mater Des, 2019, 163: 107532. doi:10.1016/j.matdes.2018.12.004http://dx.doi.org/10.1016/j.matdes.2018.12.004
Ren W C, Zheng Y N, Cui Z H, Tao Y S, Li B X, Wang W T. Energy Storage Mater, 2021, 35: 157-168. doi:10.1016/j.ensm.2020.11.019http://dx.doi.org/10.1016/j.ensm.2020.11.019
Peng L Q, Kong X B, Li H, Wang X, Shi C, Hu T X, Liu Y Z, Zhang P, Zhao J B. Adv Funct Mater, 2020, 31(10): 2008537. doi:10.1002/adfm.202008537http://dx.doi.org/10.1002/adfm.202008537
Li Y Q, Yu L, Hu W R, Hu X L. J Mater Chem A, 2020, 8(39): 20294-20317. doi:10.1039/d0ta07511fhttp://dx.doi.org/10.1039/d0ta07511f
Zhang J W, Rao Q Q, Jin B Y, Lu J G, He Q G, Hou Y, Li Z P, Zhan X L, Chen F Q, Zhang Q H. Chem Eng J, 2020, 388:124120. doi:10.1016/j.cej.2020.124120http://dx.doi.org/10.1016/j.cej.2020.124120
Li Y Y, Zhang J W, Zhou C F, Ling M, Lu J G, Hou Y, Zhang Q H, He Q G, Zhan X L, Chen F Q. J Alloy Compd, 2020, 826: 154197. doi:10.1016/j.jallcom.2020.154197http://dx.doi.org/10.1016/j.jallcom.2020.154197
Huang P H, Chang S J, Li C C. J Power Sources, 2017, 338: 82-90. doi:10.1016/j.jpowsour.2016.11.026http://dx.doi.org/10.1016/j.jpowsour.2016.11.026
Huang P H, Chang S J, Li C C, Chen C A. Electrochim Acta, 2017, 228: 597-603. doi:10.1016/j.electacta.2017.01.094http://dx.doi.org/10.1016/j.electacta.2017.01.094
Chen C A, Li C C. Solid State Ion, 2018, 323: 56-63. doi:10.1016/j.ssi.2018.05.013http://dx.doi.org/10.1016/j.ssi.2018.05.013
Xu J T, Chou S L, Gu Q F, Liu H K, Dou S X. J Power Sources, 2013, 225: 172-178. doi:10.1016/j.jpowsour.2012.10.033http://dx.doi.org/10.1016/j.jpowsour.2012.10.033
Wang Yali(王亚丽), Liu Bingxue(刘丙学), Tian Guofeng(田国峰), Qi Shengli(齐胜利), Wu Dezhen(武德珍). Acta Polymerica Sinica(高分子学报), 2020, 51(4): 326-337
Li J T, Wu Z Y, Lu YQ, Zhou Y, Huang Q S, Huang L, Sun S G. Adv Energy Mater, 2017, 7(24): 1701185. doi:10.1002/aenm.201701185http://dx.doi.org/10.1002/aenm.201701185
Pham H Q, Lee J, Jung H M, Song S W. Electrochim Acta, 2019, 317: 711-721. doi:10.1016/j.electacta.2019.06.034http://dx.doi.org/10.1016/j.electacta.2019.06.034
Liu H, Chen T Q, Xu Z X, Liu Z Z, Yang J, Chen J D. ACS Appl Mater Interfaces, 2020, 12(49): 54842-54850. doi:10.1021/acsami.0c17563http://dx.doi.org/10.1021/acsami.0c17563
Jin Z, Gao H, Kong C, Zhan H, Li Z Y. ECS Electrochem Lett, 2013, 2(7): A66-A68. doi:10.1149/2.005307eelhttp://dx.doi.org/10.1149/2.005307eel
Wang X, Hu Y, Song L, Xing W Y, Lu H D A , Lv P, Jie G X. Polymer, 2010, 51(11): 2435-2445. doi:10.1016/j.polymer.2010.03.053http://dx.doi.org/10.1016/j.polymer.2010.03.053
Zhong H, Kong C, Zhan H, Zhan C M, Zhou Y H. J Power Sources, 2012, 216: 273-280. doi:10.1016/j.jpowsour.2012.05.015http://dx.doi.org/10.1016/j.jpowsour.2012.05.015
Ji W X, Wang F, Liu D T, Qian J F, Cao Y L, Chen Z X, Yang H X, Ai X P. J Mater Chem A, 2016, 4(29): 11239-11246. doi:10.1039/c6ta03407ahttp://dx.doi.org/10.1039/c6ta03407a
Jin H Z, Han X F, Radjenovic P M, Tian J H, Li J F. J Phys Chem C, 2021, 125(3): 1761-1766. doi:10.1021/acs.jpcc.0c10196http://dx.doi.org/10.1021/acs.jpcc.0c10196
Li Z M, Ding A Y, Zhang M L, Yan Y X, Yang Z, Luo F. Rare Metal Mat Eng, 2018, 47(8): 2417-2421
Li Hui(李惠), Ji Weiwiao(吉维肖), Cao Yuliang(曹余良), Zhan Hui(詹晖), Yang Hanxi(杨汉西), Ai Xinping(艾新平). Energy Storage Science and Technology(储能科学与技术), 2018, 7(3): 376-383
He Hao(何浩), Pan Junan(潘俊安), Lei Wei Xin(雷维新), Pan Yong(潘勇), Hu Jia Qing(胡佳卿), Liao Ang(廖盎). Energy Storage Science and Technology(储能科学与技术), 2019, 8(4): 718-724
Li H G, Zhou D, Du C L, Zhang C. J Electrochem Energy Convers Storage, 2021, 18(2): 020904. doi:10.1115/1.4048705http://dx.doi.org/10.1115/1.4048705
Li Y D, Wang W W, Lin C, Zuo F H. J Clean Prod, 2021, 286: 125451
Spotnitz R, Franklin J. J Power Sources, 2003, 113(1): 81-100. doi:10.1016/s0378-7753(02)00488-3http://dx.doi.org/10.1016/s0378-7753(02)00488-3
Liu B H, Jia Y K, Yuan C H, Wang L B, Gao X, Yin S, Xu J. Energy Storage Mater, 2020, 24: 85-112. doi:10.1016/j.ensm.2019.06.036http://dx.doi.org/10.1016/j.ensm.2019.06.036
Duan J, Tang X, Dai H F, Yang Y, Wu W Y, Wei X Z, Huang Y H. Electrochem Energy Rev, 2020, 3(1): 1-42. doi:10.1007/s41918-019-00060-4http://dx.doi.org/10.1007/s41918-019-00060-4
Zhang G X, Wei X Z, Chen S Q, Zhu J G, Han G S, Dai H F. ACS Appl Energy Mater, 2021, 4(11): 12858-12870. doi:10.1021/acsaem.1c02537http://dx.doi.org/10.1021/acsaem.1c02537
Lai X, Zheng Y J, Zhou L, Gao W K. Electrochim Acta, 2018, 278: 245-254. doi:10.1016/j.electacta.2018.05.048http://dx.doi.org/10.1016/j.electacta.2018.05.048
Qian K, Li Y Y, He Y B, Liu D Q, Zheng Y, Luo D, Li B H, Kang F Y. RSC Adv, 2016, 6(80): 76897-76904. doi:10.1039/c6ra11288ahttp://dx.doi.org/10.1039/c6ra11288a
Feng X N, Ouyang M G, Liu X, Lu L G, Xia Y, He X M. Energy Storage Mater, 2018, 10: 246-267. doi:10.1016/j.ensm.2017.05.013http://dx.doi.org/10.1016/j.ensm.2017.05.013
Xu G J, Huang L, Lu C L, Zhou X H, Cui G L. Energy Storage Mater, 2020, 31: 72-86. doi:10.1016/j.ensm.2020.06.004http://dx.doi.org/10.1016/j.ensm.2020.06.004
Liu X, Ren D S, Hsu H J, Feng X N, Xu G L, Zhuang M H, Gao H, Lu LG, Han X B, Chu Z Y, Li J Q, He X M, Amine K, Ouyang M G. Joule, 2018, 2(10): 2047-2064. doi:10.1016/j.joule.2018.06.015http://dx.doi.org/10.1016/j.joule.2018.06.015
Chen W C, Wang Y W, Shu C M. J Power Sources, 2016, 318: 200-209. doi:10.1016/j.jpowsour.2016.04.001http://dx.doi.org/10.1016/j.jpowsour.2016.04.001
Glazier S L, Li J, Louli A J, Allen J P, Dahn J R. J Electrochem Soc, 2017, 164(14): A3545-A3555. doi:10.1149/2.0421714jeshttp://dx.doi.org/10.1149/2.0421714jes
Francis C, Louey R, Sammut K, Best A S. J Electrochem Soc, 2018, 165(7): A1204-A1221. doi:10.1149/2.0281807jeshttp://dx.doi.org/10.1149/2.0281807jes
Ping P, Wang Q S, Huang P F, Sun J H, Chen C H. Appl Energy, 2014, 129: 261-273. doi:10.1016/j.apenergy.2014.04.092http://dx.doi.org/10.1016/j.apenergy.2014.04.092
Waag W, Fleischer C, Sauer D U. J Power Sources, 2014, 258: 321-339. doi:10.1016/j.jpowsour.2014.02.064http://dx.doi.org/10.1016/j.jpowsour.2014.02.064
Luo Chengdong(罗承东), Lv Taolin(吕桃林), Xie Jingying(解晶莹), Fu Shiyi(付诗意), Wu Lei(吴磊). Chinese Journal of Power Sources(电源技术), 2021, 45(10):1371-1375
Abada S, Marlair G, Lecocq A, Petit M, Sauvant-Moynot V, Huet F. J Power Sources, 2016, 306: 178-192. doi:10.1016/j.jpowsour.2015.11.100http://dx.doi.org/10.1016/j.jpowsour.2015.11.100
Liu B, Zhao H, Yu H, Li J, Xu J. Electrochim Acta, 2017, 256: 172-184. doi:10.1016/j.electacta.2017.10.045http://dx.doi.org/10.1016/j.electacta.2017.10.045
Ye Y H, Shi Y X, Cai N S, Lee J, He X M. J Power Sources, 2012, 199: 227-238. doi:10.1016/j.jpowsour.2011.10.027http://dx.doi.org/10.1016/j.jpowsour.2011.10.027
An Z, Shah K, Jia L, Ma Y. Appl Therm Eng, 2019, 160: 113960. doi:10.1016/j.applthermaleng.2019.113960http://dx.doi.org/10.1016/j.applthermaleng.2019.113960
Ping P, Wang Q S, Chung Y M, Wen J. Appl Energy, 2017, 205: 1327-1344. doi:10.1016/j.apenergy.2017.08.073http://dx.doi.org/10.1016/j.apenergy.2017.08.073
Ma M N, Wang Y, Duan Q L, Wu T Q, Sun J H, Wang Q S. Energy, 2018, 164: 745-756. doi:10.1016/j.energy.2018.09.047http://dx.doi.org/10.1016/j.energy.2018.09.047
Zhu X Q, Wang Z P, Wang Y T, Wang H, Wang C, Tong L, Yi M. Energy, 2019, 169: 868-880. doi:10.1016/j.energy.2018.12.041http://dx.doi.org/10.1016/j.energy.2018.12.041
Li W Q, Qu Z G, He Y L, Tao Y B. J Power Sources, 2014, 255: 9-15. doi:10.1016/j.jpowsour.2014.01.006http://dx.doi.org/10.1016/j.jpowsour.2014.01.006
Park K H, Kim C H, Cho H K, Seo J K. J Power Electron, 2010, 10(2): 210-217. doi:10.6113/jpe.2010.10.2.210http://dx.doi.org/10.6113/jpe.2010.10.2.210
Bohinsky A, Rangarajan S P, Barsukov Y, Mukherjee P. J Mater Chem A, 2021, 9(32): 17249-17260. doi:10.1039/d1ta05290jhttp://dx.doi.org/10.1039/d1ta05290j
Lotfi N, Fajri P, Novosad S, Savage J, Landers R G, Ferdowsi M. Energies, 2013, 6(10): 5231-5258. doi:10.3390/en6105231http://dx.doi.org/10.3390/en6105231
Azizi Y, Sadrameli S M. Energy Conv Manag, 2016, 128: 294-302. doi:10.1016/j.enconman.2016.09.081http://dx.doi.org/10.1016/j.enconman.2016.09.081
Greco A, Jiang X, Cao D P. J Power Sources, 2015, 278: 50-68. doi:10.1016/j.jpowsour.2014.12.027http://dx.doi.org/10.1016/j.jpowsour.2014.12.027
Zhao J T, Lv P Z, Rao Z H. Exp Therm Fluid Sci, 2017, 82: 182-188. doi:10.1016/j.expthermflusci.2016.11.017http://dx.doi.org/10.1016/j.expthermflusci.2016.11.017
Zou D Q, Ma X F, Liu X S, Zheng P J, Hu Y P. Int. J Heat Mass Transf, 2018, 120: 33-41. doi:10.1016/j.ijheatmasstransfer.2017.12.024http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.12.024
Srinivasan R, Demirev P A, Carkhuff B G, Santhanagopalan S, Jeevarajan J A, Barrera T P. J Electrochem Soc, 2020, 167(14): 140516. doi:10.1149/1945-7111/abc0a5http://dx.doi.org/10.1149/1945-7111/abc0a5
Shen Jiani(沈佳妮), He Yijun(贺益君), Ma Zifeng(马紫峰). CIESC Journal(化工学报), 2018, 69(1): 309-316
Wang Q S, Jiang L H, Yu Y, Sun J H. Nano Energy, 2019, 55: 93-114. doi:10.1016/j.nanoen.2018.10.035http://dx.doi.org/10.1016/j.nanoen.2018.10.035
Liu Z F, Jiang Y J, Hu Q M, Guo S T, Yu L, Li Q, Liu Q, Hu X L. Energy Environ Mater, 2021, 4(3): 336-362. doi:10.1002/eem2.12129http://dx.doi.org/10.1002/eem2.12129
Gao F, Liu H, Yang K, Zeng C T, Wang S P, Fan M H, Wang H. Int J Electrochem Sci, 2020, 15(2): 1391-1411
0
Views
371
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution