浏览全部资源
扫码关注微信
华南理工大学发光材料与器件国家重点实验室 广州 510640
Published:20 July 2022,
Published Online:13 May 2022,
Received:26 February 2022,
Accepted:22 March 2022
移动端阅览
张凯.溶液加工大面积有机太阳电池材料与器件[J].高分子学报,2022,53(07):737-751.
Zhang Kai.Solution-processed Large Area Organic Solar Cells Materials and Devices[J].ACTA POLYMERICA SINICA,2022,53(07):737-751.
张凯.溶液加工大面积有机太阳电池材料与器件[J].高分子学报,2022,53(07):737-751. DOI: 10.11777/j.issn1000-3304.2022.22055.
Zhang Kai.Solution-processed Large Area Organic Solar Cells Materials and Devices[J].ACTA POLYMERICA SINICA,2022,53(07):737-751. DOI: 10.11777/j.issn1000-3304.2022.22055.
有机太阳电池是一类以有机光电材料为核心的新型光伏技术,具有重量轻、颜色可调、可低成本溶液加工、可实现柔性和半透明等突出优点,在建筑-光伏一体化、半透明车窗、便携式移动充电等领域具有独特的应用潜力. 随着有机太阳电池在新材料方面的进步以及器件物理方面的发展,有机太阳电池效率实现了多次突破. 与此同时,面向商业应用的大面积有机太阳电池模组的开发也越来越受到研究人员的关注. 本文围绕溶液加工大面积有机太阳电池材料与器件,主要介绍了我们在领域内的工作进展,包括大面积均匀阴极界面层的构筑,印刷加工活性层过度聚集行为的抑制,新型印刷加工器件结构的探索等. 最后讨论了有机太阳电池模组存在的问题,并对其未来发展进行了展望.
In the past few years
the performance of laboratory-scale organic solar cells (OSCs) have experienced very fast development
especially with the development of non-fullerene acceptor. However
there are still challenges on the way to realizing efficient module devices
such as the low compatibility of the thickness-sensitive interlayer and active layer with large area coating techniques
the tremendous power loss on enlarged electrode
the frequent need for toxic solvents
tedious optimization processes used during device fabrication
etc
. To achieve high-performance large area PSC modules
we have carried out a series of studies. For the interlayer
we have developed simple and efficient approaches to achieving large a
rea cathode interlayer using electrostatic layer-by-layer self-assembly and
in situ
self-assembly processes.
N
-type doping was also developed to obtain printable large area cathode interlayer. In terms of active layer
one of the main obstacles for printing ideal active layer comes from the excessive aggregation of film during printing. In this case
we have employed solvent engineering
third component strategy
molecular engineering and device structure engineering to overcome the excessive aggregation of active layer during printing and obtained high performance modules. On the basis of these results
non-halogen solvent dimethylbenzene processed large-area module with an active area of 18 cm
2
and efficiency over 14% was obtained. Finally
the existing problems and development directions of this field are discussed and forecasted.
有机太阳电池大面积模组界面层活性层聚集器件结构
Organic solar cellLarge-area moduleInterlayerActive layer aggregationDevice structure
Huang Fei(黄飞), Bo Zhishan(薄志山), Geng Yanhou(耿延候), Wang Xianhong(王献红), Wang Lixiang(王利祥), Ma Yuguang(马於光), Hou Jianhui(侯剑辉), Hu Wenping(胡文平), Pei Jian(裴坚), Dong Huanli(董焕丽), Wang Shu(王树), Li Zhen(李振), Shuai Zhigang(帅志刚), Li Yongfang(李永舫), Cao Yong(曹镛). Acta Polymerica Sinica(高分子学报), 2019, 50(10): 988-1046. doi:10.11777/j.issn1000-3304.2019.19110http://dx.doi.org/10.11777/j.issn1000-3304.2019.19110
Sun C, Xia R, Shi H, Yao H, Liu X, Hou J, Huang F, Yip H L, Cao Y. Joule, 2018, 2(9): 1816-1826. doi:10.1016/j.joule.2018.06.006http://dx.doi.org/10.1016/j.joule.2018.06.006
Kippelen B, Brédas J L. Energy Environ Sci, 2009, 2(3): 251-261. doi:10.1039/b812502nhttp://dx.doi.org/10.1039/b812502n
Liu H, Yu M H, Lee C C, Yu X, Li Y, Zhu Z, Chueh C C, Li Z, Jen A K Y. Adv Mater Technol, 2021, 6(6): 2000960. doi:10.1002/admt.202000960http://dx.doi.org/10.1002/admt.202000960
Riede M, Spoltore D, Leo K. Adv Energy Mater, 2021, 11(1): 2002653. doi:10.1002/aenm.202002653http://dx.doi.org/10.1002/aenm.202002653
Kearns D, Calvin M. J Chem Phys, 1958, 29(4): 950-951. doi:10.1063/1.1744619http://dx.doi.org/10.1063/1.1744619
Tang C W. Appl Phys Lett, 1986, 48(2): 183-185. doi:10.1063/1.96937http://dx.doi.org/10.1063/1.96937
Sariciftci N S, Smilowitz L, Heeger A J, Wudl F. Science, 1992, 258(5087): 1474-1476. doi:10.1126/science.258.5087.1474http://dx.doi.org/10.1126/science.258.5087.1474
Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Science, 1995, 270(5243): 1789-1791. doi:10.1126/science.270.5243.1789http://dx.doi.org/10.1126/science.270.5243.1789
Scharber M C. Adv Mater, 2016, 28(10): 1994-2001. doi:10.1002/adma.201504914http://dx.doi.org/10.1002/adma.201504914
Lin Y, Wang J, Zhang Z G, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27(7): 1170-1174. doi:10.1002/adma.201404317http://dx.doi.org/10.1002/adma.201404317
Nielsen C B, Holliday S, Chen H Y, Cryer S J, McCulloch I. Acc Chem Res, 2015, 48(11): 2803-2812. doi:10.1021/acs.accounts.5b00199http://dx.doi.org/10.1021/acs.accounts.5b00199
Armin A, Li W, Sandberg O J, Xiao Z, Ding L, Nelson J, Neher D, Vandewal K, Shoaee S, Wang T, Ade H, Heumüller T, Brabec C, Meredith P. Adv Energy Mater, 2021, 11(15): 2003570. doi:10.1002/aenm.202003570http://dx.doi.org/10.1002/aenm.202003570
Cui Y, Xu Y, Yao H, Bi P, Hong L, Zhang J, Zu Y, Zhang T, Qin J, Ren J, Chen Z, He C, Hao X, Wei Z, Hou J. Adv Mater, 2021, 33(41): e2102420. doi:10.1002/adma.202102420http://dx.doi.org/10.1002/adma.202102420
Chong K, Xu X, Meng H, Xue J, Yu L, Ma W, Peng Q. Adv Mater, 2022, 2109516. doi:10.1002/adma.202109516http://dx.doi.org/10.1002/adma.202109516
Zheng Z, Wang J, Bi P, Ren J, Wang Y, Yang Y, Liu X, Zhang S, Hou J. Joule, 2022, 6(1): 171-184. doi:10.1016/j.joule.2021.12.017http://dx.doi.org/10.1016/j.joule.2021.12.017
Distler A, Brabec C J, Egelhaaf H J. Prog Photovolt Res Appl, 2021, 29(1): 24-31. doi:10.1002/pip.3336http://dx.doi.org/10.1002/pip.3336
Qin F, Sun L, Chen H, Liu Y, Lu X, Wang W, Liu T, Dong X, Jiang P, Jiang Y, Wang L, Zhou Y. Adv Mater, 2021, 33(39): 2103017. doi:10.1002/adma.202103017http://dx.doi.org/10.1002/adma.202103017
Chen H, Zhang R, Chen X, Zeng G, Kobera L, Abbrent S, Zhang B, Chen W, Xu G, Oh J, Kang S H, Chen S, Yang C, Brus J, Hou J, Gao F, Li Y, Li Y. Nat Energy, 2021, 6(11): 1045-1053. doi:10.1038/s41560-021-00923-5http://dx.doi.org/10.1038/s41560-021-00923-5
Wang G, Adil M A, Zhang J, Wei Z. Adv Mater, 2019, 31(45): 1805089. doi:10.1002/adma.201805089http://dx.doi.org/10.1002/adma.201805089
Bernardo G, Lopes T, Lidzey D G, Mendes A. Adv Energy Mater, 2021, 11(23): 2100342. doi:10.1002/aenm.202100342http://dx.doi.org/10.1002/aenm.202100342
Xue P, Cheng P, Han R P S, Zhan X. Mater Horiz, 2022, 9(1): 194-219. doi:10.1039/d1mh01317chttp://dx.doi.org/10.1039/d1mh01317c
Sorrentino R, Kozma E, Luzzati S, Po R. Energy Environ Sci, 2021, 14(1): 180-223. doi:10.1039/d0ee02503hhttp://dx.doi.org/10.1039/d0ee02503h
Duan C, Zhang K, Zhong C, Huang F, Cao Y. Chem Soc Rev, 2013, 42(23): 9071-9104. doi:10.1039/c3cs60200ahttp://dx.doi.org/10.1039/c3cs60200a
Zhang M, Bai Y, Sun C, Xue L, Wang H, Zhang Z G. Sci China Chem, 2022, 65(3): 462-485. doi:10.1007/s11426-021-1171-4http://dx.doi.org/10.1007/s11426-021-1171-4
Liu S, Zhang K, Lu J, Zhang J, Yip H L, Huang F, Cao Y. J Am Chem Soc, 2013, 135(41): 15326-15329. doi:10.1021/ja408363chttp://dx.doi.org/10.1021/ja408363c
Zhang Z G, Qi B, Jin Z, Chi D, Qi Z, Li Y, Wang J. Energy Environ Sci, 2014, 7(6): 1966-1973. doi:10.1039/c4ee00022fhttp://dx.doi.org/10.1039/c4ee00022f
Wu Z, Sun C, Dong S, Jiang X F, Wu S, Wu H, Yip H L, Huang F, Cao Y. J Am Chem Soc, 2016, 138(6): 2004-2013. doi:10.1021/jacs.5b12664http://dx.doi.org/10.1021/jacs.5b12664
Kang Q, Ye L, Xu B, An C, Stuard S J, Zhang S, Yao H, Ade H, Hou J. Joule, 2019, 3(1): 227-239. doi:10.1016/j.joule.2018.10.024http://dx.doi.org/10.1016/j.joule.2018.10.024
Zhang J, Xue R, Xu G, Chen W, Bian G Q, Wei C, Li Y, Li Y. Adv Funct Mater, 2018, 28(13): 1705847. doi:10.1002/adfm.201705847http://dx.doi.org/10.1002/adfm.201705847
Liu C, Xiao C, Li W. J Mater Chem C, 2021, 9(40): 14093-14114. doi:10.1039/d1tc03434khttp://dx.doi.org/10.1039/d1tc03434k
Liao S H, Jhuo H J, Cheng Y S, Chen S A. Adv Mater, 2013, 25(34): 4766-4771. doi:10.1002/adma.201301476http://dx.doi.org/10.1002/adma.201301476
Nian L, Chen Z, Herbst S, Li Q, Yu C, Jiang X, Dong H, Li F, Liu L, Würthner F, Chen J, Xie Z, Ma Y. Adv Mater, 2016, 28(34): 7521-7526. doi:10.1002/adma.201601615http://dx.doi.org/10.1002/adma.201601615
Dong S, Zhang K, Liu X, Yin Q, Yip H L, Huang F, Cao Y. Sci China Chem, 2019, 62(1): 67-73. doi:10.1007/s11426-018-9350-4http://dx.doi.org/10.1007/s11426-018-9350-4
Wei J, Zhang C, Ji G, Han Y, Ismail I, Li H, Luo Q, Yang J, Ma C Q. Sol Energy, 2019, 193: 102-110. doi:10.1016/j.solener.2019.09.037http://dx.doi.org/10.1016/j.solener.2019.09.037
Bai Y, Zhao C, Zhang S, Zhang S, Yu R, Hou J, Tan Z A, Li Y. Sci China Chem, 2020, 63(7): 957-965. doi:10.1007/s11426-020-9744-4http://dx.doi.org/10.1007/s11426-020-9744-4
Decher G. Science, 1997, 277(5330): 1232-1237. doi:10.1126/science.277.5330.1232http://dx.doi.org/10.1126/science.277.5330.1232
Bertrand P, Jonas A, Laschewsky A, Legras R. Macromol Rapid Commun, 2000, 21(7): 319-348. doi:10.1002/(sici)1521-3927(20000401)21:7<319::aid-marc319>3.0.co;2-7http://dx.doi.org/10.1002/(sici)1521-3927(20000401)21:7<319::aid-marc319>3.0.co;2-7
Ishii H, Sugiyama K, Ito E, Seki K. Adv Mater, 1999, 11(8): 605-625. doi:10.1002/(sici)1521-4095(199906)11:8<605::aid-adma605>3.0.co;2-qhttp://dx.doi.org/10.1002/(sici)1521-4095(199906)11:8<605::aid-adma605>3.0.co;2-q
Zhang K, Hu Z, Xu R, Jiang X F, Yip H L, Huang F, Cao Y. Adv Mater, 2015, 27(24): 3607-3613. doi:10.1002/adma.201500972http://dx.doi.org/10.1002/adma.201500972
Zhang K, Xu R, Ge W, Qi M, Zhang G, Xu Q H, Huang F, Cao Y, Wang X. Nano Energy, 2017, 34: 164-171. doi:10.1016/j.nanoen.2017.02.022http://dx.doi.org/10.1016/j.nanoen.2017.02.022
Chen F C, Chien S C. J Mater Chem, 2009, 19(37): 6865-6869. doi:10.1039/b907773ahttp://dx.doi.org/10.1039/b907773a
Fu P, Huang L, Yu W, Yang D, Liu G, Zhou L, Zhang J, Li C. Nano Energy, 2015, 13: 275-282. doi:10.1016/j.nanoen.2015.02.032http://dx.doi.org/10.1016/j.nanoen.2015.02.032
Zheng N, Wang Z, Zhang K, Li Y, Huang F, Cao Y. J Mater Chem A, 2019, 7(4): 1429-1434. doi:10.1039/c8ta09763ahttp://dx.doi.org/10.1039/c8ta09763a
Jing J, Dong S, Zhang K, Xie B, Zhang J, Song Y, Huang F. Nano Energy, 2022, 93: 106814. doi:10.1016/j.nanoen.2021.106814http://dx.doi.org/10.1016/j.nanoen.2021.106814
Li S, Zhang H, Yue S, Yu X, Zhou H. Nanotechnology, 2021, 33(7): 072002. doi:10.1088/1361-6528/ac020bhttp://dx.doi.org/10.1088/1361-6528/ac020b
Lee S, Jeong D, Kim C, Lee C, Kang H, Woo H Y, Kim B J. ACS Nano, 2020, 14(11): 14493-14527. doi:10.1021/acsnano.0c07488http://dx.doi.org/10.1021/acsnano.0c07488
Loser S, Valle B, Luck K A, Song C K, Ogien G, Hersam M C, Singer K D, Marks T J. Adv Energy Mater, 2014, 4(14): 1301938. doi:10.1002/aenm.201301938http://dx.doi.org/10.1002/aenm.201301938
Foster S, Deledalle F, Mitani A, Kimura T, Kim K B, Okachi T, Kirchartz T, Oguma J, Miyake K, Durrant J R, Doi S, Nelson J. Adv Energy Mater, 2014, 4(14): 1400311. doi:10.1002/aenm.201400311http://dx.doi.org/10.1002/aenm.201400311
Tremolet de Villers B J, O'Hara K A, Ostrowski D P, Biddle P H, Shaheen S E, Chabinyc M L, Olson D C, Kopidakis N. Chem Mater, 2016, 28(3): 876-884. doi:10.1021/acs.chemmater.5b04346http://dx.doi.org/10.1021/acs.chemmater.5b04346
Zhang K, Chen Z, Armin A, Dong S, Xia R, Yip H L, Shoaee S, Huang F, Cao Y. Solar RRL, 2018, 2(1): 1700169. doi:10.1002/solr.201700169http://dx.doi.org/10.1002/solr.201700169
Park C D, Fleetham T A, Li J, Vogt B D. Org Electron, 2011, 12(9): 1465-1470. doi:10.1016/j.orgel.2011.05.020http://dx.doi.org/10.1016/j.orgel.2011.05.020
Griffin J, Pearson A J, Scarratt N W, Wang T, Dunbar A D F, Yi H, Iraqi A, Buckley A R, Lidzey D G. Org Electron, 2015, 21: 216-222. doi:10.1016/j.orgel.2015.03.019http://dx.doi.org/10.1016/j.orgel.2015.03.019
Kumari T, Lee S M, Yang C. Adv Funct Mater, 2018, 28(19): 1707278. doi:10.1002/adfm.201707278http://dx.doi.org/10.1002/adfm.201707278
Ye L, Xiong Y, Zhang Q, Li S, Wang C, Jiang Z, Hou J, You W, Ade H. Adv Mater, 2018, 30(8): 1705485. doi:10.1002/adma.201705485http://dx.doi.org/10.1002/adma.201705485
Krebs F C. Sol Energy Mater Sol Cells, 2009, 93(4): 394-412. doi:10.1016/j.solmat.2008.10.004http://dx.doi.org/10.1016/j.solmat.2008.10.004
Zhang G, Zhao J, Chow P C Y, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H. Chem Rev, 2018, 118(7): 3447-3507. doi:10.1021/acs.chemrev.7b00535http://dx.doi.org/10.1021/acs.chemrev.7b00535
Zhu L, Zhang M, Zhou G, Hao T, Xu J, Wang J, Qiu C, Prine N, Ali J, Feng W, Gu X, Ma Z, Tang Z, Zhu H, Ying L, Zhang Y, Liu F. Adv Energy Mater, 2020, 10(18): 1904234. doi:10.1002/aenm.201904234http://dx.doi.org/10.1002/aenm.201904234
Dong S, Zhang K, Jia T, Zhong W, Wang X, Huang F, Cao Y. EcoMat, 2019, 1(1): e12006. doi:10.1002/eom2.12006http://dx.doi.org/10.1002/eom2.12006
Lee T, Oh S, Rasool S, Song C E, Kim D, Lee S K, Shin W S, Lim E. J Mater Chem A, 2020, 8(20): 10318-10330. doi:10.1039/d0ta00947dhttp://dx.doi.org/10.1039/d0ta00947d
Zhao H, Lin B, Xue J, Naveed H B, Zhao C, Zhou X, Zhou K, Wu H, Cai Y, Yun D, Tang Z, Ma W. Adv Mater, 2022, 34(7): 2105114. doi:10.1002/adma.202105114http://dx.doi.org/10.1002/adma.202105114
Yuan J, Zhang Y, Zhou L, Zhang G, Yip H L, Lau T K, Lu X, Zhu C, Peng H, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3(4): 1140-1151. doi:10.1016/j.joule.2019.01.004http://dx.doi.org/10.1016/j.joule.2019.01.004
Guo Q, Guo Q, Geng Y, Tang A, Zhang M, Du M, Sun X, Zhou E. Mater Chem Front, 2021, 5(8): 3257-3280. doi:10.1039/d1qm00060hhttp://dx.doi.org/10.1039/d1qm00060h
Zhu L, Zhang M, Zhong W, Leng S, Zhou G, Zou Y, Su X, Ding H, Gu P, Liu F, Zhang Y. Energy Environ Sci, 2021, 14(8): 4341-4357 doi:10.1039/d1ee01220ghttp://dx.doi.org/10.1039/d1ee01220g
Chen S, Feng L, Jia T, Jing J, Hu Z, Zhang K, Huang F. Sci China Chem, 2021, 64(7): 1192-1199. doi:10.1007/s11426-021-1013-0http://dx.doi.org/10.1007/s11426-021-1013-0
Zhang G, Chen X K, Xiao J, Chow P C Y, Ren M, Kupgan G, Jiao X, Chan C C S, Du X, Xia R, Chen Z, Yuan J, Zhang Y, Zhang S, Liu Y, Zou Y, Yan H, Wong K S, Coropceanu V, Li N, Brabec C J, Bredas J L, Yip H L, Cao Y. Nat Commun, 2020, 11(1): 3943. doi:10.1038/s41467-020-17867-1http://dx.doi.org/10.1038/s41467-020-17867-1
Hong L, Yao H, Wu Z, Cui Y, Zhang T, Xu Y, Yu R, Liao Q, Gao B, Xian K, Woo H Y, Ge Z, Hou J. Adv Mater, 2019, 31(39): 1903441. doi:10.1002/adma.201903441http://dx.doi.org/10.1002/adma.201903441
Dong S, Jia T, Zhang K, Jing J, Huang F. Joule, 2020, 4(9): 2004-2016. doi:10.1016/j.joule.2020.07.028http://dx.doi.org/10.1016/j.joule.2020.07.028
Huang Y, Kramer E J, Heeger A J, Bazan G C. Chem Rev, 2014, 114(14): 7006-7043. doi:10.1021/cr400353vhttp://dx.doi.org/10.1021/cr400353v
Brabec C J, Heeney M, McCulloch I, Nelson J. Chem Soc Rev, 2011, 40(3): 1185-1199. doi:10.1039/c0cs00045khttp://dx.doi.org/10.1039/c0cs00045k
Faure M D M, Lessard B H. J Mater Chem C, 2021, 9(1): 14-40. doi:10.1039/d0tc04146ghttp://dx.doi.org/10.1039/d0tc04146g
Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5: 5293. doi:10.1038/ncomms6293http://dx.doi.org/10.1038/ncomms6293
Dong S, Zhang K, Xie B, Xiao J, Yip H L, Yan H, Huang F, Cao Y. Adv Energy Mater, 2019, 9(1): 1802832. doi:10.1002/aenm.201802832http://dx.doi.org/10.1002/aenm.201802832
Zheng Y, Sun R, Zhang M, Chen Z, Peng Z, Wu Q, Yuan X, Yu Y, Wang T, Wu Y, Hao X, Lu G, Ade H, Min J. Adv Energy Mater, 2021: 2102135. doi:10.1002/aenm.202102135http://dx.doi.org/10.1002/aenm.202102135
Sun R, Wu Q, Guo J, Wang T, Wu Y, Qiu B, Luo Z, Yang W, Hu Z, Guo J, Shi M, Yang C, Huang F, Li Y, Min J. Joule, 2020, 4(2): 407-419. doi:10.1016/j.joule.2019.12.004http://dx.doi.org/10.1016/j.joule.2019.12.004
0
Views
151
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution