浏览全部资源
扫码关注微信
郑州大学化学学院 绿色催化中心 郑州 450000
Published:20 July 2022,
Published Online:23 May 2022,
Accepted:06 April 2022
移动端阅览
茹艺,卢思宇.碳化聚合物点:一种新型的单颗粒有机无机杂化体系[J].高分子学报,2022,53(07):812-827.
Ru Yi,Lu Si-yu.Carbonized Polymer Dots: a Novel Single-particle Organic-inorganic Hybrid System[J].ACTA POLYMERICA SINICA,2022,53(07):812-827.
茹艺,卢思宇.碳化聚合物点:一种新型的单颗粒有机无机杂化体系[J].高分子学报,2022,53(07):812-827. DOI: 10.11777/j.issn1000-3304.2022.22065.
Ru Yi,Lu Si-yu.Carbonized Polymer Dots: a Novel Single-particle Organic-inorganic Hybrid System[J].ACTA POLYMERICA SINICA,2022,53(07):812-827. DOI: 10.11777/j.issn1000-3304.2022.22065.
碳化聚合物点(CPDs)指通过自下而上法,经聚合、交联、碳化而形成的一种具有特殊的碳核和聚合物壳杂化结构. 这种特殊的杂化结构赋予了CPDs独特的光学、电学等物理化学性质,作为一种新兴的零维碳纳米材料受到了广泛的研究关注. 本文通过系统地总结与分析,强调了CPDs聚合-碳化的本质,把CPDs看作是一种新型的单颗粒有机无机杂化体系,并从CPDs的结构特点、制备、光电性质及其在光学和催化领域的应用4个角度总结了CPDs的研究进展. 重点介绍了郑州大学碳点研究中心在CPDs的可控制备、发光机理、光学和催化领域的应用相关的研究工作,论述了CPDs未来发展所面临的问题与方向.
Carbonized polymer dots (CPDs) is a kind of carbon-based nanomaterial with a new hybrid structure of carbon core and polymer shell
which is formed by polymerization
crosslinking and carbonization of small molecules
polymers or biomass through bottom-up methods. This special hybrid structure endows CPDs with many unique optical
electrical and other physical and chemical properties. For example
hig
h fluorescence quantum yield
easy surface functionalization
high chemical stability
photobleaching resistance
low toxicity
etc
.
make CPDs show great application potential in biomedicine
catalysis
photoelectric devices
sensing
anti-counterfeiting and other fields. As an emerging kind of zero-dimensional carbon nanomaterials
CPDs has received extensive research attentions. Here
through the summary and analysis of the relevant literature
we emphasize the importance of polymerization and carbonization on the structure and properties of CPDs
and it is seen as a new type of single-particle organic inorganic hybrid system. We summarize the research progress of CPDs from four perspectives: the structural characteristics
preparation
photoelectric properties and their applications in the fields of optics and catalysis. The emphasis of this review is especially focused on our research work on the fields of controllable preparation
luminescence mechanism
optical and catalytic applications
and discusses the problems and important development direction of CPDs in the future.
碳化聚合物点核壳结构有机无机杂化可控制备光电性质
Carbonized polymer dotsCore-shell structureInorganic-organic hybridControllable preparationPhotoelectric properties
Li Z, Wang L, Li Y, Feng Y, Feng W. Mater Chem Front, 2019, 3(12): 2571-2601. doi:10.1039/c9qm00415ghttp://dx.doi.org/10.1039/c9qm00415g
Tao S, Feng T, Zheng C, Zhu S, Yang B. J Phys Chem Lett, 2019, 10(17): 5182-5188. doi:10.1021/acs.jpclett.9b01384http://dx.doi.org/10.1021/acs.jpclett.9b01384
Xia C, Zhu S, Feng T, Yang M, Yang B. Adv Sci, 2019, 6(23): 1901316. doi:10.1002/advs.201901316http://dx.doi.org/10.1002/advs.201901316
Liu J, Li D, Zhang K, Yang M, Sun H, Yang B. Small, 2018, 14(15): 1703919. doi:10.1002/smll.201703919http://dx.doi.org/10.1002/smll.201703919
Xia C, Tao S, Zhu S, Song Y, Feng T, Zeng Q, Liu J, Yang B. Chem Eur J, 2018, 24(44): 11303-11308. doi:10.1002/chem.201802712http://dx.doi.org/10.1002/chem.201802712
Zeng Q, Feng T, Tao S, Zhu S, Yang B. Light: Sci Appl, 2021, 10(1): 142. doi:10.1038/s41377-021-00579-6http://dx.doi.org/10.1038/s41377-021-00579-6
Song Y, Zhu S, Shao J, Yang B. J Polym Sci Part A: Polym Chem, 2017, 55(4): 610-615. doi:10.1002/pola.28416http://dx.doi.org/10.1002/pola.28416
Hill S A, Benito A D, Morgan D J, Davis S A, Berry M, Galan M C. Nanoscale, 2016, 8(44): 18630-18634. doi:10.1039/c6nr07336khttp://dx.doi.org/10.1039/c6nr07336k
Gu J, Wang W, Zhang Q, Meng Z, Jia X, Xi K. RSC Adv, 2013, 3(36): 15589-15591. doi:10.1039/c3ra41654bhttp://dx.doi.org/10.1039/c3ra41654b
Song Y, Zhu S, Zhang S, Fu Y, Wang L, Zhao X, Yang B. J Mater Chem C, 2015, 3(23): 5976-5984. doi:10.1039/c5tc00813ahttp://dx.doi.org/10.1039/c5tc00813a
Jiang K, Sun S, Zhang L, Lu Y, Wu A, Cai C, Lin H. Angew Chem Int Ed, 2015, 54(18): 5360-5363. doi:10.1002/anie.201501193http://dx.doi.org/10.1002/anie.201501193
Tian Z, Zhang X, Li D, Zhou D, Jing P, Shen D, Qu S, Zboril R, Rogach A L. Adv Opt Mater, 2017, 5(19): 1700416. doi:10.1002/adom.201700416http://dx.doi.org/10.1002/adom.201700416
Hu T, Wen Z, Wang C, Thomas T, Wang C, Song Q, Yang M. Nanoscale Adv, 2019, 1(4): 1413-1420. doi:10.1039/c8na00329ghttp://dx.doi.org/10.1039/c8na00329g
Ding H, Yu S B, Wei J S, Xiong H M. ACS Nano, 2016, 10(1): 484-491. doi:10.1021/acsnano.5b05406http://dx.doi.org/10.1021/acsnano.5b05406
Wang L, Li W, Yin L, Liu Y, Guo H, Lai J, Han Y, Li G, Li M, Zhang J, Vajtai R, Ajayan P, Wu M. Sci Adv, 2020, 6(40): eabb6772. doi:10.1126/sciadv.abb6772http://dx.doi.org/10.1126/sciadv.abb6772
Wang B, Song H, Qu X, Chang J, Yang B, Lu S. Coord Chem Rev, 2021, 442214010. doi:10.1016/j.ccr.2021.214010http://dx.doi.org/10.1016/j.ccr.2021.214010
Lu S, Sui L, Liu J, Zhu S, Chen A, Jin M, Yang B. Adv Mater, 2017, 29(15): 1603443. doi:10.1002/adma.201603443http://dx.doi.org/10.1002/adma.201603443
Wang B, Li J, Tang Z, Yang B, Lu S. Sci Bull, 2019, 64(17): 1285-1292. doi:10.1016/j.scib.2019.07.021http://dx.doi.org/10.1016/j.scib.2019.07.021
Miao S, Liang K, Zhu J, Yang B, Zhao D, Kong B. Nano Today, 2020, 33:100879. doi:10.1016/j.nantod.2020.100879http://dx.doi.org/10.1016/j.nantod.2020.100879
Wang Q, Zhang S, Wang B, Yang X, Zou B, Yang B, Lu S. Nanoscale Horiz, 2019, 4(5): 1227-1231. doi:10.1039/c9nh00287ahttp://dx.doi.org/10.1039/c9nh00287a
Jiang L, Ding H, Xu M, Hu X, Li S, Zhang M, Zhang Q, Wang Q, Lu S, Tian Y, Bi H. Small, 2020, 16(19): 2000680. doi:10.1002/smll.202070107http://dx.doi.org/10.1002/smll.202070107
Yang X, Sui L, Wang B, Zhang Y, Tang Z, Yang B, Lu S. Sci China Chem, 2021, 64(9): 1547-1553. doi:10.1007/s11426-021-1033-6http://dx.doi.org/10.1007/s11426-021-1033-6
Wang B, Yu J, Sui L, Zhu S, Tang Z, Yang B, Lu S. Adv Sci, 2021, 8(1): 2001453. doi:10.1002/advs.202001453http://dx.doi.org/10.1002/advs.202001453
Zhao Y, Ou C, Yu J, Zhang Y, Song H, Zhai Y, Tang Z, Lu S. ACS Appl Mater Interfaces, 2021, 13(25): 30098-30105. doi:10.1021/acsami.1c07444http://dx.doi.org/10.1021/acsami.1c07444
Wang B, Song H, Tang Z, Yang B, Lu S. Nano Res, 2022, 15(2): 942-949. doi:10.1007/s12274-021-3579-5http://dx.doi.org/10.1007/s12274-021-3579-5
Meng W, Bai X, Wang B, Liu Z, Lu S, Yang B. Energy Environ Mater, 2019, 2(3): 172-192. doi:10.1002/eem2.12038http://dx.doi.org/10.1002/eem2.12038
Meng W, Wang B, Ai L, Song H, Lu S. J Colloid Interface Sci, 2021, 598: 274-282. doi:10.1016/j.jcis.2021.04.022http://dx.doi.org/10.1016/j.jcis.2021.04.022
Li W, Liu Y, Wang B, Song H, Liu Z, Lu S, Yang B. Chin Chem Lett, 2019, 30(12): 2323-2327. doi:10.1016/j.cclet.2019.06.040http://dx.doi.org/10.1016/j.cclet.2019.06.040
Song H, Liu X, Wang B, Tang Z, Lu S. Sci Bull, 2019, 64(23): 1788-1794. doi:10.1016/j.scib.2019.10.006http://dx.doi.org/10.1016/j.scib.2019.10.006
Ai L, Yang Y, Wang B, Chang J, Tang Z, Yang B, Lu S. Sci Bull, 2021, 66(8): 839-856. doi:10.1016/j.scib.2020.12.015http://dx.doi.org/10.1016/j.scib.2020.12.015
Wang B, Lu S. Matter, 2022, 5(1): 110-149. doi:10.1016/j.matt.2021.10.016http://dx.doi.org/10.1016/j.matt.2021.10.016
Lu S, Xiao G, Sui L, Feng T, Yong X, Zhu S, Li B, Liu Z, Zou B, Jin M, Tse J, Yan H, Yang B. Angew Chem Int Ed, 2017, 56(22): 6187-6191. doi:10.1002/anie.201700757http://dx.doi.org/10.1002/anie.201700757
Jiang L, Ding H, Lu S, Geng T, Xiao G, Zou B, Bi H. Angew Chem Int Ed, 2020, 59(25): 9986-9991. doi:10.1002/anie.201913800http://dx.doi.org/10.1002/anie.201913800
Ma W, Xu L, de Moura A F, Wu X, Kuang H, Xu C, Kotov N A. Chem Rev, 2017, 117(12): 8041-8093. doi:10.1021/acs.chemrev.6b00755http://dx.doi.org/10.1021/acs.chemrev.6b00755
Ru Y, Ai L, Jia T, Liu X, Lu S, Tang Z, Yang B. Nano Today, 2020, 34: 100953. doi:10.1016/j.nantod.2020.100953http://dx.doi.org/10.1016/j.nantod.2020.100953
Ru Y, Sui L, Song H, Liu X, Tang Z, Zang S Q, Yang B, Lu S. Angew Chem Int Ed, 2021, 60(25): 14091-14099. doi:10.1002/anie.202103336http://dx.doi.org/10.1002/anie.202103336
Lv K, Suo W, Shao M, Zhu Y, Wang X, Feng J, Fang M, Zhu Y. Nano Energy, 2019, 63: 103834. doi:10.1016/j.nanoen.2019.06.030http://dx.doi.org/10.1016/j.nanoen.2019.06.030
Han M, Zhu S, Lu S, Song Y, Feng T, Tao S, Liu J, Yang B. Nano Today, 2018, 19: 201-218. doi:10.1016/j.nantod.2018.02.008http://dx.doi.org/10.1016/j.nantod.2018.02.008
Han Y, Tang D, Yang Y, Li C, Kong W, Huang H, Liu Y, Kang Z. Nanoscale, 2015, 7(14): 5955-5962. doi:10.1039/c4nr07116fhttp://dx.doi.org/10.1039/c4nr07116f
Favaro M, Ferrighi L, Fazio G, Colazzo L, Di Valentin C, Durante C, Sedona F, Gennaro A, Agnoli S, Granozzi G. ACS Catal, 2015, 5(1): 129-144. doi:10.1021/cs501211hhttp://dx.doi.org/10.1021/cs501211h
Li W, Liu Y, Wu M, Feng X, Redfern S A T, Shang Y, Yong X, Feng T, Wu K, Liu Z, Li B, Chen Z, Tse J, Lu S, Yang B. Adv Mater, 2018, 30(31): 1800676. doi:10.1002/adma.201800676http://dx.doi.org/10.1002/adma.201800676
Chen Z, Mou K, Wang X, Liu L. Angew Chem Int Ed, 2018, 57(39): 12790-12794. doi:10.1002/anie.201807643http://dx.doi.org/10.1002/anie.201807643
Tang C, Zhang Q. Adv Mater, 2017, 29(13): 1604103. doi:10.1002/adma.201604103http://dx.doi.org/10.1002/adma.201604103
Zhang L, Xu Q, Niu J, Xia Z. Phys Chem Chem Phys, 2015, 17(26): 16733-16743. doi:10.1039/c5cp02014jhttp://dx.doi.org/10.1039/c5cp02014j
Zhai Y, Zhang B, Shi R, Zhang S, Liu Y, Wang B, Zhang K, Waterhouse G, Zhang T, Lu S. Adv Energy Mater, 2022, 12: 2103426. doi:10.1002/aenm.202103426http://dx.doi.org/10.1002/aenm.202103426
Xie F, Xu Z, Jensen A C S, Ding F, Au H, Feng J, Luo H, Qiao M, Guo Z, Lu Y, Drew A J, Hu Y, Titirici M. J Mater Chem A, 2019, 7(48): 27567-27575. doi:10.1039/c9ta11369jhttp://dx.doi.org/10.1039/c9ta11369j
Tan G, Bao W, Yuan Y, Liu Z, Shahbazian Yassar R, Wu F, Amine K, Wang J, Lu J. J Mater Chem A, 2017, 5(11): 5532-5540. doi:10.1039/c7ta00969khttp://dx.doi.org/10.1039/c7ta00969k
Saroja A P V K, Garapati M S, ShyiamalaDevi R, Kamaraj M, Ramaprabhu S. Appl Surf Sci, 2020, 504: 144430
Hou H, Banks C E, Jing M, Zhang Y, Ji X. Adv Mater, 2015, 27(47): 7861-7866. doi:10.1002/adma.201503816http://dx.doi.org/10.1002/adma.201503816
Wang H, Wang C, Dang B, Xiong Y, Jin C, Sun Q, Xu M. ChemElectroChem, 2018, 5(17): 2367-2375. doi:10.1002/celc.201800444http://dx.doi.org/10.1002/celc.201800444
Zhang S, Sui L, Dong H, He W, Dong L, Yu L. ACS Appl Mater Interfaces, 2018, 10(15): 12983-12991. doi:10.1021/acsami.8b00323http://dx.doi.org/10.1021/acsami.8b00323
Pope M A, Aksay I A. J Phys Chem C, 2015, 119(35): 20369-20378. doi:10.1021/acs.jpcc.5b07521http://dx.doi.org/10.1021/acs.jpcc.5b07521
Zhu J, Childress A S, Karakaya M, Dandeliya S, Srivastava A, Lin Y, Rao A M, Podila R. Adv Mater, 2016, 28(33): 7185-7192. doi:10.1002/adma.201602028http://dx.doi.org/10.1002/adma.201602028
Jin S, Ni Y, Hao Z, Zhang K, Lu Y, Yan Z, Wei Y, Lu Y, Chan T, Chen J. Angew Chem Int Ed, 2020, 59(49): 21885-21889. doi:10.1002/anie.202008422http://dx.doi.org/10.1002/anie.202008422
Yu H, Shi R, Zhao Y, Waterhouse G I N, Wu L Z, Tung C H, Zhang T. Adv Mater, 2016, 28(43): 9454-9477. doi:10.1002/adma.201602581http://dx.doi.org/10.1002/adma.201602581
Liu Y, Li X, Zhang Q, Li W, Xie Y, Liu H, Shang L, Liu Z, Chen Z, Gu L, Tang Z, Zhang T, Lu S. Angew Chem Int Ed, 2020, 59(4): 1718-1726. doi:10.1002/anie.201913910http://dx.doi.org/10.1002/anie.201913910
Song H, Wu M, Tang Z, Tse J S, Yang B, Lu S. Angew Chem Int Ed, 2021, 60(13): 7234-7244. doi:10.1002/anie.202017102http://dx.doi.org/10.1002/anie.202017102
Li W, Zhao Y, Liu Y, Sun M, Waterhouse G I N, Huang B, Zhang K, Zhang T, Lu S. Angew Chem Int Ed, 2021, 60(6): 3290-3298. doi:10.1002/anie.202013985http://dx.doi.org/10.1002/anie.202013985
Li W, Wei Z, Wang B, Liu Y, Song H, Tang Z, Yang B, Lu S. Mater Chem Front, 2020, 4(1): 277-284. doi:10.1039/c9qm00618dhttp://dx.doi.org/10.1039/c9qm00618d
Liu Y, Yang Y, Peng Z, Liu Z, Chen Z, Shang L, Lu S, Zhang T. Nano Energy, 2019, 65: 104023. doi:10.1016/j.nanoen.2019.104023http://dx.doi.org/10.1016/j.nanoen.2019.104023
Liu W, Li M, Jiang G, Li G, Zhu J, Xiao M, Zhu Y, Gao R, Yu A, Feng M, Chen Z. Adv Energy Mater, 2020, 10(29): 2001275. doi:10.1002/aenm.202001275http://dx.doi.org/10.1002/aenm.202001275
Tian L, Li Z, Wang P, Zhai X, Wang X, Li T. J Energy Chem, 2021, 55: 279-294. doi:10.1016/j.jechem.2020.06.057http://dx.doi.org/10.1016/j.jechem.2020.06.057
Gao S, Chen Y, Fan H, Wei X, Hu C, Wang L, Qu L. J Mater Chem A, 2014, 2(18): 6320-6325. doi:10.1039/c3ta15443bhttp://dx.doi.org/10.1039/c3ta15443b
Van Tam T, Kang S G, Babu K F, Oh E, Lee S G, Choi W M. J Mater Chem A, 2017, 5(21): 10537-10543. doi:10.1039/c7ta01485fhttp://dx.doi.org/10.1039/c7ta01485f
Zhang P, Wei J S, Chen X B, Xiong H M. J Colloid Interface Sci, 2019, 537: 716-724. doi:10.1016/j.jcis.2018.11.024http://dx.doi.org/10.1016/j.jcis.2018.11.024
Liu J, Li R, Yang B. ACS Cent Sci, 2020, 6(12): 2179-2195. doi:10.1021/acscentsci.0c01306http://dx.doi.org/10.1021/acscentsci.0c01306
Gather M C, Yun S H. Nat Photon, 2011, 5(7): 406-410. doi:10.1038/nphoton.2011.99http://dx.doi.org/10.1038/nphoton.2011.99
She C, Fedin I, Dolzhnikov D S, Dahlberg P D, Engel G S, Schaller R D, Talapin D V. ACS Nano, 2015, 9(10): 9475-9485. doi:10.1021/acsnano.5b02509http://dx.doi.org/10.1021/acsnano.5b02509
Grim J Q, Christodoulou S, Di Stasio F, Krahne R, Cingolani R, Manna L, Moreels I. Nat Nanotechnol, 2014, 9(11): 891-895. doi:10.1038/nnano.2014.213http://dx.doi.org/10.1038/nnano.2014.213
Zhang Y, Song H, Wang L, Yu J, Wang B, Hu Y, Zang S Q, Yang B, Lu S. Angew Chem Int Ed, 2021, 60(48): 25514-25521. doi:10.1002/anie.202111285http://dx.doi.org/10.1002/anie.202111285
Feng T, Tao S, Yue D, Zeng Q, Chen W, Yang B. Small, 2020, 16(31): 2001295. doi:10.1002/smll.202001295http://dx.doi.org/10.1002/smll.202001295
Song H, Li Y, Shang L, Tang Z, Zhang T, Lu S. Nano Energy, 2020, 72: 104730. doi:10.1016/j.nanoen.2020.104730http://dx.doi.org/10.1016/j.nanoen.2020.104730
Wu H, Wu M, Wang B, Yong X, Liu Y, Li B, Liu B, Lu S. J Energy Chem, 2020, 48: 43-53. doi:10.1016/j.jechem.2019.12.023http://dx.doi.org/10.1016/j.jechem.2019.12.023
Song H, Cheng Y, Li B, Fan Y, Liu B, Tang Z, Lu S. ACS Sustainable Chem Eng, 2020, 8(9): 3995-4002. doi:10.1021/acssuschemeng.0c00745http://dx.doi.org/10.1021/acssuschemeng.0c00745
0
Views
230
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution