浏览全部资源
扫码关注微信
1.聚合物分子工程国家重点实验室 复旦大学先进材料实验室 高分子科学系 上海 200433
2.复旦大学附属中山医院 上海 200032
Zheng-zhong Shao, E-mail: zzshao@fudan.edu.cn
Published:20 January 2023,
Published Online:28 September 2022,
Received:19 May 2022,
Accepted:20 June 2022
扫 描 看 全 文
达高欢,马易群,林沁睿等.含有锂皂土/聚多巴胺复合纳米微粒的再生丝蛋白水凝胶[J].高分子学报,2023,54(01):95-105.
Da Gao-huan,Ma Yi-qun,Lin Qin-rui,et al.Regenerated Silk Fibroin Hydrogel with Laponite/Polydopamine Composite Nanoparticles[J].ACTA POLYMERICA SINICA,2023,54(01):95-105.
达高欢,马易群,林沁睿等.含有锂皂土/聚多巴胺复合纳米微粒的再生丝蛋白水凝胶[J].高分子学报,2023,54(01):95-105. DOI: 10.11777/j.issn1000-3304.2022.22190.
Da Gao-huan,Ma Yi-qun,Lin Qin-rui,et al.Regenerated Silk Fibroin Hydrogel with Laponite/Polydopamine Composite Nanoparticles[J].ACTA POLYMERICA SINICA,2023,54(01):95-105. DOI: 10.11777/j.issn1000-3304.2022.22190.
在辣根过氧化物酶/过氧化氢酶促交联(化学交联)制备再生丝蛋白化学交联凝胶的过程中,通过引入锂皂土/聚多巴胺复合纳米材料作为第二组分,以调节反应并提高化学交联效率;再经乙醇熟化后,再生丝蛋白化学交联凝胶中可进一步形成物理网络,进而得到双交联凝胶. 结果表明,第二组分的引入不仅能够提高再生丝蛋白化学交联水凝胶的力学性能,并有利于后续均匀物理交联网络的形成,致使最终所得双交联水凝胶具有更好的力学性能. 同时,由此制备的双交联水凝胶传承了再生丝蛋白良好的生物相容性以及与交联结构密切相关的生物降解性,并具备了诱导干细胞成骨分化的能力,因而在软骨修复等领域具有潜在的应用价值.
Regenerated silk fibroin (RSF) hydrogel has been widely used in the field of tissue engineering due to its good biocompatibility
degradability and low immunogenicity. It shows a good application prospect in the field of cartilage repair. However
as a natural polymer hydrogel
the strength of RSF hydrogel is difficult to match with cartilage. In this study
during the preparation of RSF chemical crosslinked hydrogel by horseradish peroxidase (HRP)/hydrogen peroxide (H
2
O
2
) enzymatic crosslinking
laponite (LAP)/polydopamine (PDA) composite nanomaterials were introduced as a second component to adjust the reaction and improve the chemical crosslinking efficiency. Compared with the pure RSF chemically crosslinked hydrogel
the mechanical properties of the composite hydrogel were significantly improved after the addition of LAP/PDA composite nanomaterials
and the compression modulus was improved by about 70%. This is mainly because the LAP/PDA composite nanomaterials inhibited the "curling" of silk protein molecular chains in the crosslinking process by participating in the enzymatic crosslinking reaction
and increased the chemical crosslinking points in the crosslinked network. After soaking in ethanol
physical crosslinked network can be further formed in RSF chemical crosslinked hydrogel to obtain a double crosslinked hydrogel. The increase of chemical crosslinking points in the RSF-LAP/PDA chemical crosslinked hydrogel was beneficial to decreasing the dimensions and improving the distribution uniformity of the
β
-sheet domains formed during ethanol ripening
such that the mechanical properties of the final double crosslinked hydrogel were greatly improved. This double crosslinked method can effectively solve the problem of mechanical properties degradation caused by inhomogeneous crosslinked network when preparing RSF hydrogel with high solid content
and improve the stability of regenerated silk fibroin based hydrogel as implant repair materials
in vivo
.
In vitro
study showed that the RSF-LAP/PDA double crosslinked hydrogel had excellent biocompatibility and the ability to induce osteogenic differentiation of stem cells
which made it good application prospect in cartilage repair and other fields.
丝蛋白水凝胶酶交联物理交联双交联
Silk fibroinHydrogelEnzymatic crosslinkingPhysical crosslinkingDouble crosslinking
Wang H. Y.; Zhang Y. Q. Processing silk hydrogel and its applications in biomedical materials. Biotechnol. Prog., 2015, 31, 630-640. doi:10.1002/btpr.2058http://dx.doi.org/10.1002/btpr.2058
Floren M.; Migliaresi C.; Motta A. Processing techniques and applications of silk hydrogels in bioengineering. J. Funct. Biomater., 2016, 7, 26-47. doi:10.3390/jfb7030026http://dx.doi.org/10.3390/jfb7030026
杨公雯, 顾恺, 邵正中. 从天然动物丝到丝蛋白基材料的研究. 高分子学报, 2021, 52, 16-28. doi:10.11777/j.issn1000-3304.2020.20142http://dx.doi.org/10.11777/j.issn1000-3304.2020.20142
Singh Y. P.; Bhardwaj N.; Mandal B. B. Potential of agarose/silk fibroin blended hydrogel for in vitro cartilage tissue engineering. ACS Appl. Mater. Interfaces, 2016, 8, 21236-21249. doi:10.1021/acsami.6b08285http://dx.doi.org/10.1021/acsami.6b08285
Thiele J.; Ma Y. J.; Bruekers S. M. C.; Ma S. H.; Huck W. T. S. 25th Anniversary article: designer hydrogels for cell cultures: a materials selection guide. Adv. Mater., 2014, 26, 125-148. doi:10.1002/adma.201302958http://dx.doi.org/10.1002/adma.201302958
Jonker A. M.; Löwik D. W. P. M.; van Hest J. C. M. Peptide- and protein-based hydrogels. Chem. Mater., 2012, 24, 759-773. doi:10.1021/cm202640whttp://dx.doi.org/10.1021/cm202640w
Luo K. Y.; Yang Y. H.; Shao Z. Z. Physically crosslinked biocompatible silk-fibroin-based hydrogels with high mechanical performance. Adv. Funct. Mater., 2016, 26, 872-880. doi:10.1002/adfm.201503450http://dx.doi.org/10.1002/adfm.201503450
Matsumoto A.; Chen J. S.; Collette A. L.; Kim U. J.; Altman G. H.; Cebe P.; Kaplan D. L. Mechanisms of silk fibroin sol-gel transitions. J. Phys. Chem. B, 2006, 110, 21630-21638. doi:10.1021/jp056350vhttp://dx.doi.org/10.1021/jp056350v
Wang X. Q.; Kluge J. A.; Leisk G. G.; Kaplan D. L. Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials, 2008, 29, 1054-1064. doi:10.1016/j.biomaterials.2007.11.003http://dx.doi.org/10.1016/j.biomaterials.2007.11.003
Yucel T.; Cebe P.; Kaplan D. L. Vortex-induced injectable silk fibroin hydrogels. Biophys. J., 2009, 97, 2044-2050. doi:10.1016/j.bpj.2009.07.028http://dx.doi.org/10.1016/j.bpj.2009.07.028
Leisk G. G.; Lo T. J.; Yucel T.; Lu Q.; Kaplan D. L. Electrogelation for protein adhesives. Adv. Mater., 2010, 22, 711-715. doi:10.1002/adma.200902643http://dx.doi.org/10.1002/adma.200902643
Murphy A. R.; Kaplan D. L. Biomedical applications of chemically-modified silk fibroin. J. Mater. Chem., 2009, 19, 6443-6450. doi:10.1039/b905802hhttp://dx.doi.org/10.1039/b905802h
Moreira-Teixeira L. S.; Jan F. J.; van Blitterswijk C. A.; Dijkstra P. J.; Karperien M. Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials, 2012, 33, 1281-1290. doi:10.1016/j.biomaterials.2011.10.067http://dx.doi.org/10.1016/j.biomaterials.2011.10.067
Bae J. W.; Choi J. H.; Lee Y.; Park K. D. Horseradish peroxidase-catalysed in situ-forming hydrogels for tissue-engineering applications. J. Tissue Eng. Regen. Med., 2015, 9, 1225-1232. doi:10.1002/term.1917http://dx.doi.org/10.1002/term.1917
Partlow B. P.; Hanna C. W.; Rnjak-Kovacina J.; Moreau J. E.; Applegate M. B.; Burke K. A.; Marelli B.; Mitropoulos A. N.; Omenetto F. G.; Kaplan D. L. Highly tunable elastomeric silk biomaterials. Adv. Funct. Mater., 2014, 24, 4615-4624. doi:10.1002/adfm.201400526http://dx.doi.org/10.1002/adfm.201400526
Su D. H.; Yao M.; Liu J.; Zhong Y. M.; Chen X.; Shao Z. Z. Enhancing mechanical properties of silk fibroin hydrogel through restricting the growth of beta-sheet domains. ACS Appl. Mater. Interfaces, 2017, 9, 17489-17498. doi:10.1021/acsami.7b04623http://dx.doi.org/10.1021/acsami.7b04623
Dawson, J. I.; Oreffo, R. O. C. Clay: New opportunities for tissue regeneration and biomaterial design. Adv. Mater., 2013, 25, 4069-4086. doi:10.1002/adma.201301034http://dx.doi.org/10.1002/adma.201301034
Gaharwar A. K.; Cross L. M.; Peak C. W.; Gold K.; Carrow J. K.; Brokesh A.; Singh K. A. 2D nanoclay for biomedical applications: Regenerative medicine, therapeutic delivery, and additive manufacturing. Adv. Mater., 2019, 31, 1900332-1900359. doi:10.1002/adma.201900332http://dx.doi.org/10.1002/adma.201900332
Waters R.; Pacelli S.; Maloney R.; Medhi I.; Ahmed R. P. H.; Paul A. Stem cell secretome-rich nanoclay hydrogel: a dual action therapy for cardiovascular regeneration. Nanoscale, 2016, 8, 7371-7376. doi:10.1039/c5nr07806ghttp://dx.doi.org/10.1039/c5nr07806g
Yang K.; Lee J. S.; Kim J.; Lee Y. B.; Shin H.; Um S. H.; Kim J. B.; Park K. I.; Lee H.; Cho S. W. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials, 2012, 33, 6952-6964. doi:10.1016/j.biomaterials.2012.06.067http://dx.doi.org/10.1016/j.biomaterials.2012.06.067
Cho H. J.; Perikamana S. K. M.; Lee J. H.; Lee J.; Lee K. M.; Shin C. S.; Shin H. Effective immobilization of BMP-2 mediated by polydopamine coating on biodegradable nanofibers for enhanced in vivo bone formation. ACS Appl. Mater. Interfaces, 2014, 6, 11225-11235. doi:10.1021/am501391zhttp://dx.doi.org/10.1021/am501391z
Lee H.; Scherer N. F.; Messersmith P. B. Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. USA, 2006, 103, 12999-13003. doi:10.1073/pnas.0605552103http://dx.doi.org/10.1073/pnas.0605552103
Lee H.; Dellatore S. M.; Miller W. M.; Messersmith P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007, 318, 426-430. doi:10.1126/science.1147241http://dx.doi.org/10.1126/science.1147241
Yang X.; Duan L.; Ran X. Q. Effect of polydopamine coating on improving photostability of polyphenylene sulfide fiber. Polym. Bull., 2017, 74, 641-656. doi:10.1007/s00289-016-1735-yhttp://dx.doi.org/10.1007/s00289-016-1735-y
Xu F. L.; Liu M. X.; Li X.; Xiong Z. J.; Cao X. Y.; Shi X. Y.; Guo R. Loading of indocyanine green within polydopamine-coated laponite nanodisks for targeted cancer photothermal and photodynamic therapy. Nanomaterials, 2018, 8, 347-362. doi:10.3390/nano8050347http://dx.doi.org/10.3390/nano8050347
Gao L. Z.; Zhuang J.; Nie L.; Zhang J. B.; Zhang Y.; Gu N.; Wang T. H.; Feng J.; Yang D. L.; Perrett S.; Yan X. Y. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol., 2007, 2, 577-583. doi:10.1038/nnano.2007.260http://dx.doi.org/10.1038/nnano.2007.260
Foo C. W. P.; Bini E.; Hensman J.; Knight D. P.; Lewis R. V.; Kaplan D. L. Role of pH and charge on silk protein assembly in insects and spiders. Appl. Phys. A, 2006, 82, 223-233. doi:10.1007/s00339-005-3426-7http://dx.doi.org/10.1007/s00339-005-3426-7
Monti P.; Freddi G.; Bertoluzza A, Kasai N.; Tsukada M. Raman spectroscopic studies of silk fibroin from Bombyx mori. J. Raman Spectrosc., 1998, 29, 297-304. doi:10.1002/(sici)1097-4555(199804)29:4<297::aid-jrs240>3.0.co;2-ghttp://dx.doi.org/10.1002/(sici)1097-4555(199804)29:4<297::aid-jrs240>3.0.co;2-g
Monti P.; Freddi G.; Sampaio S.; Tsukada M.; Taddei P. Structure modifications induced in silk fibroin by enzymatic treatments. a raman study. J. Mol. Struct., 2005, 744, 685-690. doi:10.1016/j.molstruc.2004.10.083http://dx.doi.org/10.1016/j.molstruc.2004.10.083
Martel A.; Burghammer M.; Davies R. J.; Cola E. D.; Vendrely C.; Riekel C. Silk fiber assembly studied by synchrotron radiation SAXS/WAXS and Raman spectroscopy. J. Am. Chem. Soc., 2008, 130, 17070-17074. doi:10.1021/ja806654thttp://dx.doi.org/10.1021/ja806654t
Rodriguez-Lopez J. N.; Lowe D. J.; Hernandez-Ruiz J.; Hiner A. N. P.; Garcia-Canovas F.; Thorneley R. N. F. Mechanism of reaction of hydrogen peroxide with horseradish peroxidase: identification of intermediates in the catalytic cycle. J. Am. Chem. Soc., 2001, 132, 11838-11847. doi:10.1021/ja011853+http://dx.doi.org/10.1021/ja011853+
McGill M.; Coburn J. M.; Partlow B. P.; Mu X.; Kaplan D. L. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design. Acta. Biomater., 2017, 63, 76-84. doi:10.1016/j.actbio.2017.09.020http://dx.doi.org/10.1016/j.actbio.2017.09.020
Li M. Z.; Ogiso M.; Minoura N. Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials, 2003, 24, 357-365. doi:10.1016/s0142-9612(02)00326-5http://dx.doi.org/10.1016/s0142-9612(02)00326-5
0
Views
67
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution