浏览全部资源
扫码关注微信
中国科学院大学材料科学与光电技术学院 北京 100049
Published:20 June 2023,
Published Online:17 February 2023,
Received:13 December 2022,
Accepted:17 January 2023
扫 描 看 全 文
马博维,史钦钦,黄辉.共轭高分子的精准合成[J].高分子学报,2023,54(06):791-802.
Ma Bo-wei,Shi Qin-qin,Huang Hui.Precision Synthesis of Conjugated Polymers[J].ACTA POLYMERICA SINICA,2023,54(06):791-802.
马博维,史钦钦,黄辉.共轭高分子的精准合成[J].高分子学报,2023,54(06):791-802. DOI: 10.11777/j.issn1000-3304.2022.22432.
Ma Bo-wei,Shi Qin-qin,Huang Hui.Precision Synthesis of Conjugated Polymers[J].ACTA POLYMERICA SINICA,2023,54(06):791-802. DOI: 10.11777/j.issn1000-3304.2022.22432.
共轭高分子由于带隙容易调控、柔性、可溶液加工等优异性能,在有机光电领域具有重要的应用前景. 然而,聚合物普遍存在批次重现性差、结构缺陷多等问题,限制了聚合物的应用及发展. 本文总结了聚合物的结构缺陷,通过回顾本课题组以及国内外同行近几年的前沿工作,详细分析了共轭高分子材料均聚结构缺陷产生的原因和机理,同时介绍了目前较为常用的表征结构缺陷的方法,以及此类缺陷对器件性能的影响. 另外,还分析了当前3种合成共轭高分子材料的经典方法:Stille、Suzuki和直接芳基化聚合反应,介绍了这些方法在聚合物精准合成方面的前瞻性方法学的最新成果,并对本领域的发展进行了展望.
Semiconducting polymers
especially
π
-conjugated donor-acceptor (D-A) copolymers with defect-free alternating structures
are essential materials for plastic electronics and optoelectronics owing to their advantages of variable/tunable chemical structures
tunable bandgaps and optical absorptions
excellent charge transport mobility
mechanical flexibility
and solution processability for printing. However
the drawbacks including batch-to-batch reproducibility
structural defects
and
etc
. hindered the commercial application for polymers. Herein
we analyzed the causes of structural defects
especially homocoupling defects in terms of their mechanism of generation by illustrating the example of Stille couplings and the side reactions
the characterization methods
including matrix-assisted laser desorption/ionization (MALDI)
nuclear magnetic resonance (NMR)
gel permeation chromatography (GPC) as well as ultraviolet-visible (UV-Vis) spectra
and the impact of defects on device performance by investigating the pioneering studies of this field within 5 years. Afterwards
three significant types of polymerizations to achieve copolymers with minimized structural defects have been illustrated separately
including Stille polymerization
Suzuki polymerization and direct arylation polymerization (DArP). From the synthetic perspective
the methodologies for the precision synthesis of conjugated polymers are in high demands and will pave the road for the development of organic electronics.
共轭高分子精准合成均聚结构缺陷器件性能
Conjugated polymersPrecision synthesisHomocoupling defectsDevice performance
Carsten B.; He F.; Son H. J.; Xu T.; Yu L. Stille polycondensation for synthesis of functional materials. Chem. Rev., 2011, 111(3), 1493-1528. doi:10.1021/cr100320whttp://dx.doi.org/10.1021/cr100320w
Heeger A. J. Semiconducting polymers: the third generation. Chem. Soc. Rev., 2010, 39(7), 2354-2371. doi:10.1039/b914956mhttp://dx.doi.org/10.1039/b914956m
Phan S.; Luscombe C. K. Recent advances in the green, sustainable synthesis of semiconducting polymers. Trends. Chem., 2019, 1(7), 670-681. doi:10.1016/j.trechm.2019.08.002http://dx.doi.org/10.1016/j.trechm.2019.08.002
Zhao X.; Zhan X. Electron transporting semiconducting polymers in organic electronics. Chem. Soc. Rev., 2011, 40(7), 3728. doi:10.1039/c0cs00194ehttp://dx.doi.org/10.1039/c0cs00194e
Tong Y.; Xiao Z.; Du X.; Zuo C.; Li Y.; Lv M.; Yuan Y.; Yi C.; Hao F.; Hua Y.; Lei T.; Lin Q.; Sun K.; Zhao D.; Duan C.; Shao X.; Li W.; Yip H.-L.; Xiao Z.; Zhang B.; Bian Q.; Cheng Y.; Liu S.; Cheng M.; Jin Z.; Yang S.; Ding L. Progress of the key materials for organic solar cells. Sci. China Chem., 2020, 63(6), 758-765. doi:10.1007/s11426-020-9726-0http://dx.doi.org/10.1007/s11426-020-9726-0
Yan C.; Barlow S.; Wang Z.; Yan H.; Jen A. K. Y.; Marder S. R.; Zhan X. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater., 2018, 3(3), 18003. doi:10.1038/natrevmats.2018.3http://dx.doi.org/10.1038/natrevmats.2018.3
Cheng P.; Li G.; Zhan X.; Yang Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics, 2018, 12(3), 131-142. doi:10.1038/s41566-018-0104-9http://dx.doi.org/10.1038/s41566-018-0104-9
Hou J.; Inganas O.; Friend R. H.; Gao F. Organic solar cells based on non-fullerene acceptors. Nat Mater, 2018, 17(2), 119-128. doi:10.1038/nmat5063http://dx.doi.org/10.1038/nmat5063
Yang J.; Zhao Z.; Wang S.; Guo Y.; Liu Y. Insight into high-performance conjugated polymers for organic field-effect transistors. Chem, 2018, 4(12), 2748-2785. doi:10.1016/j.chempr.2018.08.005http://dx.doi.org/10.1016/j.chempr.2018.08.005
Dong H.; Fu X.; Liu J.; Wang Z.; Hu W. Key points for high-mobility organic field-effect transistors. Adv. Mater., 2013, 25(43), 6158-6183. doi:10.1002/adma.201302514http://dx.doi.org/10.1002/adma.201302514
Paterson A. F.; Singh S.; Fallon K. J.; Hodsden T.; Han Y.; Schroeder B. C.; Bronstein H.; Heeney M.; McCulloch I.; Anthopoulos T. D. Recent progress in high-mobility organic transistors: a reality check. Adv. Mater., 2018, 30(36), 1801079. doi:10.1002/adma.201801079http://dx.doi.org/10.1002/adma.201801079
Salehi A.; Fu X.; Shin D. H.; So F. Recent advances in OLED optical design. Adv. Funct. Mater., 2019, 29(15), 1808803. doi:10.1002/adfm.201808803http://dx.doi.org/10.1002/adfm.201808803
Borges-González J.; Kousseff C. J.; Nielsen C. B. Organic semiconductors for biological sensing. J. Mater. Chem. C., 2019, 7(5), 1111-1130. doi:10.1039/c8tc05900dhttp://dx.doi.org/10.1039/c8tc05900d
Ma L.; Wang S.; Li Y.; Shi Q.; Xie W.; Chen H.; Wang X.; Zhu W.; Jiang L.; Chen R. Air stable chalcogen-doped rubicenes with diradical character. CCS Chem., 2022, 1-8. doi:10.31635/ccschem.022.202201954http://dx.doi.org/10.31635/ccschem.022.202201954
Johansson Seechurn C. C.; Kitching M. O.; Colacot T. J.; Snieckus V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 nobel prize. Angew. Chem. Int. Ed., 2012, 51(21), 5062-5085. doi:10.1002/anie.201107017http://dx.doi.org/10.1002/anie.201107017
Li H.; Seechurn C. C. C. J.; Colacot T. J. Development of preformed Pd catalysts for cross-coupling reactions, beyond the 2010 Nobel prize. ACS Catal., 2012, 2(6), 1147-1164. doi:10.1021/cs300082fhttp://dx.doi.org/10.1021/cs300082f
Cordovilla C.; Bartolomé C.; Martínez-Ilarduya J. M.; Espinet P. The Stille reaction, 38 years later. ACS Catal., 2015, 5(5), 3040-3053. doi:10.1021/acscatal.5b00448http://dx.doi.org/10.1021/acscatal.5b00448
Suzuki A. Cross-coupling reactions of organoboranes: an easy way to construct C―C bonds. Angew. Chem. Int. Ed., 2011, 50(30), 6722-6737. doi:10.1002/anie.201101379http://dx.doi.org/10.1002/anie.201101379
Cheng S.; Zhao R.; Seferos D. S. Precision synthesis of conjugated polymers using the Kumada methodology. Acc. Chem. Res., 2021, 54(22), 4203-4214. doi:10.1021/acs.accounts.1c00556http://dx.doi.org/10.1021/acs.accounts.1c00556
Gobalasingham N. S.; Thompson B. C. Direct arylation polymerization: a guide to optimal conditions for effective conjugated polymers. Prog. Polym. Sci., 2018, 83, 135-201. doi:10.1016/j.progpolymsci.2018.06.002http://dx.doi.org/10.1016/j.progpolymsci.2018.06.002
Lombeck F.; Komber H.; Gorelsky S. I.; Sommer M. Identifying homocouplings as critical side reactions in direct arylation polycondensation. ACS Macro. Lett., 2014, 3(8), 819-823. doi:10.1021/mz5004147http://dx.doi.org/10.1021/mz5004147
Blaskovits J. T.; Johnson P. A.; Leclerc M. Mechanistic origin of β-defect formation in thiophene-based polymers prepared by direct (hetero)arylation. Macromolecules, 2018, 51(20), 8100-8113. doi:10.1021/acs.macromol.8b01142http://dx.doi.org/10.1021/acs.macromol.8b01142
Kaake L.; Dang X. D.; Leong W. L.; Zhang Y.; Heeger A.; Nguyen T. Q. Effects of impurities on operational mechanism of organic bulk heterojunction solar cells. Adv. Mater., 2013, 25(12), 1706-1712. doi:10.1002/adma.201203786http://dx.doi.org/10.1002/adma.201203786
Streiter M.; Beer D.; Meier F.; Göhler C.; Lienert C.; Lombeck F.; Sommer M.; Deibel C. Homocoupling defects in a conjugated polymer limit exciton diffusion. Adv. Funct. Mater., 2019, 29(46), 1903936. doi:10.1002/adfm.201903936http://dx.doi.org/10.1002/adfm.201903936
Heintges G. H. L.; Janssen R. A. J. On the homocoupling of trialkylstannyl monomers in the synthesis of diketopyrrolopyrrole polymers and its effect on the performance of polymer-fullerene photovoltaic cells. RSC Adv., 2019, 9(28), 15703-15714. doi:10.1039/c9ra02670chttp://dx.doi.org/10.1039/c9ra02670c
Ashraf R. S.; Kronemeijer A. J.; James D. I.; Sirringhaus H.; McCulloch I. A new thiophene substituted isoindigo based copolymer for high performance ambipolar transistors. Chem. Comm., 2012, 48(33), 3939-3941. doi:10.1039/c2cc30169ehttp://dx.doi.org/10.1039/c2cc30169e
Estrada L. A.; Deininger J. J.; Kamenov G. D.; Reynolds J. R. Direct (hetero)arylation polymerization: an effective route to 3,4-propylenedioxythiophene-based polymers with low residual metal content. ACS Macro Lett., 2013, 2(10), 869-873. doi:10.1021/mz4003886http://dx.doi.org/10.1021/mz4003886
McCullough R. D.; Lowe R. D. Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes). J. Chem. Soc., Chem. Comm., 1992, (1), 70-72. doi:10.1039/c39920000070http://dx.doi.org/10.1039/c39920000070
Hendriks K. H.; Li W.; Heintges G. H. L.; van Pruissen G. W. P.; Wienk M. M.; Janssen R. A. J. Homocoupling defects in diketopyrrolopyrrole-based copolymers and their effect on photovoltaic performance. J. Am. Chem. Soc., 2014, 136(31), 11128-11133. doi:10.1021/ja505574ahttp://dx.doi.org/10.1021/ja505574a
Kuwabara J.; Fujie Y.; Maruyama K.; Yasuda T.; Kanbara T. Suppression of homocoupling side reactions in direct arylation polycondensation for producing high performance OPV materials. Macromolecules, 2016, 49(24), 9388-9395. doi:10.1021/acs.macromol.6b02380http://dx.doi.org/10.1021/acs.macromol.6b02380
Kuwabara J.; Tsuchida W.; Guo S.; Hu Z.; Yasuda T.; Kanbara T. Synthesis of conjugated polymers via direct C―H/C―Cl coupling reactions using a Pd/Cu binary catalytic system. Polym. Chem., 2019, 10(18), 2298-2304. doi:10.1039/c9py00232dhttp://dx.doi.org/10.1039/c9py00232d
Saito H.; Kuwabara J.; Yasuda T.; Kanbara T. Synthesis of polyfluoro arylene-based poly(arylenevinylene)s via Pd-catalyzed dehydrogenative direct alkenylation. Macromol. Rapid Commun., 2018, 39(18), 1800414. doi:10.1002/marc.201800414http://dx.doi.org/10.1002/marc.201800414
Wang Q.; Lenjani S. V.; Dolynchuk O.; Scaccabarozzi A. D.; Komber H.; Guo Y.; Günther F.; Gemming S.; Magerle R.; Caironi M.; Sommer M. Electron mobility of diketopyrrolopyrrole copolymers is robust against homocoupling defects. Chem. Mater., 2021, 33(2), 668-677. doi:10.1021/acs.chemmater.0c03998http://dx.doi.org/10.1021/acs.chemmater.0c03998
Espinet P.; Echavarren A. M. The mechanisms of the stille reaction. Angew. Chem. Int. Ed., 2004, 43(36), 4704-4734.
Rudenko A. E.; Thompson B. C. Optimization of direct arylation polymerization (DArP) through the identification and control of defects in polymer structure. J. Polym. Sci., Part A-1: Polym. Chem., 2015, 53(2), 135-147. doi:10.1002/pola.27279http://dx.doi.org/10.1002/pola.27279
Adamo C.; Amatore C.; Ciofini I.; Jutand A.; Lakmini H. Mechanism of the palladium-catalyzed homocoupling of arylboronic acids: key involvement of a palladium peroxo complex. J. Am. Chem. Soc., 2006, 128(21), 6829-6836. doi:10.1021/ja0569959http://dx.doi.org/10.1021/ja0569959
Lakmini H.; Ciofini I.; Jutand A.; Amatore C.; Adamo C. Pd-catalyzed homocoupling reaction of arylboronic acid: insights from density functional theory. J. Phys. Chem. A, 2008, 112(50), 12896-12903. doi:10.1021/jp801948uhttp://dx.doi.org/10.1021/jp801948u
Sakamoto J.; Rehahn M.; Wegner G.; Schlüter A. D. Suzuki polycondensation: polyarylenes à la carte. Macromol. Rapid Commun., 2009, 30(9-10), 653-687. doi:10.1002/marc.200900063http://dx.doi.org/10.1002/marc.200900063
Vangerven T.; Verstappen P.; Drijkoningen J.; Dierckx W.; Himmelberger S.; Salleo A.; Vanderzande D.; Maes W.; Manca J. V. Molar mass versus polymer solar cell performance: highlighting the role of homocouplings. Chem. Mater., 2015, 27(10), 3726-3732. doi:10.1021/acs.chemmater.5b00939http://dx.doi.org/10.1021/acs.chemmater.5b00939
Hong W.; Chen S.; Sun B.; Arnould M. A.; Meng Y.; Li Y. Is a polymer semiconductor having a "perfect" regular structure desirable for organic thin film transistors? Chem. Sci., 2015, 6(5), 3225-3235. doi:10.1039/c5sc00843chttp://dx.doi.org/10.1039/c5sc00843c
Lombeck F.; Komber H.; Fazzi D.; Nava D.; Kuhlmann J.; Stegerer D.; Strassel K.; Brandt J.; de Zerio Mendaza A. D.; Müller C. On the effect of prevalent carbazole homocoupling defects on the photovoltaic performance of PCDTBT:PC71BM solar cells. Adv. Energy Mater., 2016, 6(21), 1601232. doi:10.1002/aenm.201601232http://dx.doi.org/10.1002/aenm.201601232
Ma B.; Shi Q.; Ma X.; Li Y.; Chen H.; Wen K.; Zhao R.; Zhang F.; Lin Y.; Wang Z. Defect‐free alternating conjugated polymers enabled by room‐temperature Stille polymerization. Angew. Chem. Int. Ed., 2022, 61(16), e202115969. doi:10.1002/anie.202115969http://dx.doi.org/10.1002/anie.202115969
Mikhnenko O. V.; Kuik M.; Lin J.; van der Kaap N.; Nguyen T. Q.; Blom P. W. Trap-limited exciton diffusion in organic semiconductors. Adv. Mater., 2014, 26(12), 1912-1917. doi:10.1002/adma.201304162http://dx.doi.org/10.1002/adma.201304162
Lin J. D. A.; Mikhnenko O. V.; Chen J.; Masri Z.; Ruseckas A.; Mikhailovsky A.; Raab R. P.; Liu J.; Blom P. W. M.; Loi M. A.; García-Cervera C. J.; Samuel I. D. W.; Nguyen T. Q. Systematic study of exciton diffusion length in organic semiconductors by six experimental methods. Mater. Horiz., 2014, 1(2), 280-285. doi:10.1039/c3mh00089chttp://dx.doi.org/10.1039/c3mh00089c
Ward A. J.; Ruseckas A.; Samuel I. D. W. A shift from diffusion assisted to energy transfer controlled fluorescence quenching in polymer-fullerene photovoltaic blends. J. Phys. Chem. C, 2012, 116(45), 23931-23937. doi:10.1021/jp307538yhttp://dx.doi.org/10.1021/jp307538y
Rörich I.; Mikhnenko O. V.; Gehrig D.; Blom P. W. M.; Crăciun N. I. Influence of energetic disorder on exciton lifetime and photoluminescence efficiency in conjugated polymers. J. Phys. Chem. B, 2017, 121(6), 1405-1412. doi:10.1021/acs.jpcb.6b11813http://dx.doi.org/10.1021/acs.jpcb.6b11813
Tamai Y.; Ohkita H.; Benten H.; Ito S. Exciton diffusion in conjugated polymers: from fundamental understanding to improvement in photovoltaic conversion efficiency. J. Phys. Chem. Lett., 2015, 6(17), 3417-3428. doi:10.1021/acs.jpclett.5b01147http://dx.doi.org/10.1021/acs.jpclett.5b01147
Zarrabi N.; Yazmaciyan A.; Meredith P.; Kassal I.; Armin A. Anomalous exciton quenching in organic semiconductors in the low-yield limit. J. Phys. Chem. Lett., 2018, 9(20), 6144-6148. doi:10.1021/acs.jpclett.8b02484http://dx.doi.org/10.1021/acs.jpclett.8b02484
Li Z.; Shi Q.; Ma X.; Li Y.; Wen K.; Qin L.; Chen H.; Huang W.; Zhang F.; Lin Y. Efficient room temperature catalytic synthesis of alternating conjugated copolymers via C―S bond activation. Nat. Commun., 2022, 13(1), 1-8. doi:10.1038/s41467-021-27832-1http://dx.doi.org/10.1038/s41467-021-27832-1
Rooney J. J. Eyring transition-state theory and kinetics in catalysis. J. Mol. Catal. A: Chem., 1995, 96(1), L1-L3. doi:10.1016/1381-1169(94)00054-9http://dx.doi.org/10.1016/1381-1169(94)00054-9
Bao Z. N.; Chan W. K.; Yu L. P. Exploration of the Stille coupling reaction for the syntheses of functional polymers. J. Am. Chem. Soc., 1995, 117(50), 12426-12435. doi:10.1021/ja00155a007http://dx.doi.org/10.1021/ja00155a007
Lee S. M.; Park K. H.; Jung S.; Park H.; Yang C. Stepwise heating in stille polycondensation toward no batch-to-batch variations in polymer solar cell performance. Nat. Commun., 2018, 9(1), 1-8. doi:10.1038/s41467-018-03718-7http://dx.doi.org/10.1038/s41467-018-03718-7
Khan F.; Dlugosch M.; Liu X.; Banwell M. G. The palladium-catalyzed ullmann cross-coupling reaction: a modern variant on a time-honored process. Acc. Chem. Res., 2018, 51(8), 1784-1795. doi:10.1021/acs.accounts.8b00169http://dx.doi.org/10.1021/acs.accounts.8b00169
Farina V. New perspectives in the cross-coupling reactions of organostannanes. Pure Appl. Chem., 1996, 68(1), 73-78. doi:10.1351/pac199668010073http://dx.doi.org/10.1351/pac199668010073
Zhu T.; Jiang L.; Li Y.; Xie Z.; Li Z.; Lv L.; Chen H.; Zhao Z.; Jiang L.; Tang B. Converting thioether waste into organic semiconductors by carbon-sulfur bond activation. Angew. Chem. Int. Ed., 2019, 58(15), 5044-5048. doi:10.1002/anie.201901274http://dx.doi.org/10.1002/anie.201901274
Jiang X. F.; Huang H.; Chai Y. F.; Lohr T. L.; Yu S. Y.; Lai W.; Pan Y. J.; Delferro M.; Marks T. J. Hydrolytic cleavage of both CS2 carbon-sulfur bonds by multinuclear Pd(II) complexes at room temperature. Nat. Chem., 2017, 9(2), 188-193. doi:10.1038/nchem.2637http://dx.doi.org/10.1038/nchem.2637
Lennox A. J. J.; Lloyd-Jones G. C. Selection of boron reagents for Suzuki-Miyaura coupling. Chem. Soc. Rev., 2014, 43(1), 412-443. doi:10.1039/c3cs60197hhttp://dx.doi.org/10.1039/c3cs60197h
Knapp D. M.; Gillis E. P.; Burke M. D. A general solution for unstable boronic acids: slow-release cross-coupling from air-stable MIDA boronates. J. Am. Chem. Soc., 2009, 131(20), 6961-6963. doi:10.1021/ja901416phttp://dx.doi.org/10.1021/ja901416p
Wong M. S.; Zhang X. L. Ligand promoted palladium-catalyzed homo-coupling of arylboronic acids. Tetrahedron Lett., 2001, 42(24), 4087-4089. doi:10.1016/s0040-4039(01)00637-2http://dx.doi.org/10.1016/s0040-4039(01)00637-2
Bura T.; Beaupré S.; Légaré M. A.; Quinn J.; Rochette E.; Blaskovits J. T.; Fontaine F. G.; Pron A.; Li Y.; Leclerc M. Direct heteroarylation polymerization: guidelines for defect-free conjugated polymers. Chem. Sci., 2017, 8(5), 3913-3925. doi:10.1039/c7sc00589jhttp://dx.doi.org/10.1039/c7sc00589j
Sui Y.; Shi Y.; Deng Y.; Li R.; Bai J.; Wang Z.; Dang Y.; Han Y.; Kirby N.; Ye L.; Geng Y. Direct arylation polycondensation of chlorinated thiophene derivatives to high-mobility conjugated polymers. Macromolecules, 2020, 53(22), 10147-10154. doi:10.1021/acs.macromol.0c02206http://dx.doi.org/10.1021/acs.macromol.0c02206
Guo K.; Bai J.; Jiang Y.; Wang Z.; Sui Y.; Deng Y.; Han Y.; Tian H.; Geng Y. Diketopyrrolopyrrole‐based conjugated polymers synthesized via direct arylation polycondensation for high mobility pure n‐channel organic field‐effect transistors. Adv. Funct. Mater., 2018, 28(31), 1801097. doi:10.1002/adfm.201801097http://dx.doi.org/10.1002/adfm.201801097
Leclerc M.; Brassard S.; Beaupré S. Direct (hetero) arylation polymerization: toward defect-free conjugated polymers. Polym. J., 2020, 52(1), 13-20. doi:10.1038/s41428-019-0245-9http://dx.doi.org/10.1038/s41428-019-0245-9
Dudnik A. S.; Aldrich T. J.; Eastham N. D.; Chang R. P.; Facchetti A.; Marks T. J. Tin-free direct C―H arylation polymerization for high photovoltaic efficiency conjugated copolymers. J. Am. Chem. Soc., 2016, 138(48), 15699-15709. doi:10.1021/jacs.6b10023http://dx.doi.org/10.1021/jacs.6b10023
Zhang J.; Parker T. C.; Chen W.; Williams L.; Khrustalev V. N.; Jucov E. V.; Barlow S.; Timofeeva T. V.; Marder S. R. C―H-activated direct arylation of strong benzothiadiazole and quinoxaline-based electron acceptors. J. Org. Chem., 2016, 81(2), 360-370. doi:10.1021/acs.joc.5b02551http://dx.doi.org/10.1021/acs.joc.5b02551
Shi Q.; Tatum W.; Zhang J.; Scott C.; Luscombe C. K.; Marder S. R.; Blakey S. B. The direct arylation polymerization (DArP) of well‐defined alternating copolymers based on 5,6‐dicyano[2,1,3]benzothiadiazole (DCBT). Asian. J. Org. Chem., 2018, 7(7), 1419-1425. doi:10.1002/ajoc.201800232http://dx.doi.org/10.1002/ajoc.201800232
Liu C.; Wang K.; Hu X.; Yang Y.; Hsu C. H.; Zhang W.; Xiao S.; Gong X.; Cao Y. Molecular weight effect on the efficiency of polymer solar cells. ACS Appl. Mater. Interfaces, 2013, 5(22), 12163-12167. doi:10.1021/am404157thttp://dx.doi.org/10.1021/am404157t
Ni Z.; Wang H.; Dong H.; Dang Y.; Zhao Q.; Zhang X.; Hu W. Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems. Nat. Chem., 2019, 11(3), 271-277. doi:10.1038/s41557-018-0200-yhttp://dx.doi.org/10.1038/s41557-018-0200-y
Liu Y.; Xian K.; Zhang X.; Gao M.; Shi Y.; Zhou K.; Deng Y.; Hou J.; Geng Y.; Ye L. A mixed-ligand strategy to modulate P3HT regioregularity for high-efficiency solar cells. Macromolecules, 2022, 55(8), 3078-3086. doi:10.1021/acs.macromol.1c02404http://dx.doi.org/10.1021/acs.macromol.1c02404
Yang C.; Zhang S.; Ren J.; Gao M.; Bi P.; Ye L.; Hou J. Molecular design of a non-fullerene acceptor enables a P3HT-based organic solar cell with 9.46% efficiency. Energy Environ. Sci., 2020, 13(9), 2864-2869. doi:10.1039/d0ee01763ahttp://dx.doi.org/10.1039/d0ee01763a
Zhang X.; Shi Y.; Dang Y.; Liang Z.; Wang Z.; Deng Y.; Han Y.; Hu W.; Geng Y. Direct arylation polycondensation of β-fluorinated bithiophenes to polythiophenes: effect of side chains in C―Br monomers. Macromolecules, 2022, 55(18), 8095-8105. doi:10.1021/acs.macromol.2c01266http://dx.doi.org/10.1021/acs.macromol.2c01266
Iizuka E.; Wakioka M.; Ozawa F. Mixed-ligand approach to palladium-catalyzed direct arylation polymerization: Synthesis of donor-acceptor polymers with dithienosilole (DTS) and thienopyrroledione (TPD) units. Macromolecules, 2015, 48(9), 2989-2993. doi:10.1021/acs.macromol.5b00526http://dx.doi.org/10.1021/acs.macromol.5b00526
Iizuka E.; Wakioka M.; Ozawa F. Mixed-ligand approach to palladium-catalyzed direct arylation polymerization: Effective prevention of structural defects using diamines. Macromolecules, 2016, 49(9), 3310-3317. doi:10.1021/acs.macromol.6b00441http://dx.doi.org/10.1021/acs.macromol.6b00441
Wakioka M.; Morita H.; Ichihara N.; Saito M.; Osaka I.; Ozawa F. Mixed-ligand approach to palladium-catalyzed direct arylation polymerization: synthesis of donor-acceptor polymers containing unsubstituted bithiophene units. Macromolecules, 2019, 53(1), 158-164. doi:10.1021/acs.macromol.9b02298http://dx.doi.org/10.1021/acs.macromol.9b02298
0
Views
132
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution