浏览全部资源
扫码关注微信
1.大连理工大学材料科学与工程学院
2.辽宁省高性能树脂材料专业技术创新中心
3.大连理工大学精细化工国家重点实验室 大连 116024
Published:20 June 2023,
Published Online:26 March 2023,
Received:06 January 2023,
Accepted:14 February 2023
扫 描 看 全 文
宋子晖,蹇锡高,胡方圆.高分子基电极材料在电化学储能中的应用进展[J].高分子学报,2023,54(06):962-975.
Song Zi-hui,Jian Xi-gao,Hu Fang-yuan.Progress of Polymer-based Electrode Materials in Electrochemical Energy Storage[J].ACTA POLYMERICA SINICA,2023,54(06):962-975.
宋子晖,蹇锡高,胡方圆.高分子基电极材料在电化学储能中的应用进展[J].高分子学报,2023,54(06):962-975. DOI: 10.11777/j.issn1000-3304.2023.23008.
Song Zi-hui,Jian Xi-gao,Hu Fang-yuan.Progress of Polymer-based Electrode Materials in Electrochemical Energy Storage[J].ACTA POLYMERICA SINICA,2023,54(06):962-975. DOI: 10.11777/j.issn1000-3304.2023.23008.
高效电化学活性材料是实现高性能电化学储能设备的关键核心之一. 如何在原子层次对电极材料微观结构进行精密调控,并发展有效合成策略和方法实现的结构控制合成,以提升器件电化学性能是备受关注的科学问题和基础研究的前沿. 高分子材料理化结构丰富、官能团种类可调,已成为现代工业发展中的重要基石. 特别是刚性芳杂环高分子基材料由于含有芳杂环结构,利于高温聚合且残炭率高,在碳化后具有良好的元素、形貌继承性,因此刚性芳杂环高分子基材料近年来在电化学储能领域也得到了广泛应用. 系统总结了刚性芳杂环高分子基电极材料在超级电容器、钠离子电池、锂硫电池等电化学储能器件中的应用. 并特别介绍了本课题组通过本征掺杂方式创制出的系列元素、形貌可控的高分子基电极材料. 最后,总结并展望了高分子基材料在能源领域中未来的研究方向.
Efficient electrochemically active materials are one of the key materials for achieving high-performance electrochemical energy storage devices. How to precisely regulate the microstructure of electrode materials at the atomic level and develop effective synthesis methods to achieve structure-controlled synthesis are scientific problems of great interest and the frontier of basic research. With the advantages of rich physical and chemical structures and adjustable functional group types
polymers have become an important type of materials in modern industrial development. In particular
rigid aromatic heterocyclic polymer-based materials have been widely used in electrochemical energy storage in recent years because they contain aromatic heterocyclic structures
facilitate high-temperature polymerization
have high residual carbon rates
and have good elemental and morphological inheritance after carbonization. In this feature article
we summarized the applications of rigid aromatic heterocyclic polymer-based electrode materials in electrochemical energy storage devices such as supercapacitors
sodium-ion batteries
and lithium-sulfur batteries. In particular
we discussed a series of elemental and morphology-controlled polymer-based electrode materials created by our group through intrinsic doping. Finally
the future research directions of polymer-based materials in the field of energy are summarized and prospected.
高分子材料超级电容器钠离子电池锂硫电池芳杂环高分子
PolymersSupercapacitorsSodium-ion batteriesLithium-sulfur batteriesAromatic heterocyclic polymers
Armand M.; Tarascon J. M. Building better batteries. Nature, 2008, 451, 652-657. doi:10.1038/451652ahttp://dx.doi.org/10.1038/451652a
Lv Z. S.; Li W. L.; Yang L.; Loh X. J.; Chen X. D. Custom-made electrochemical energy storage devices. ACS Energy Lett., 2019, 4(2), 606-614. doi:10.1021/acsenergylett.8b02408http://dx.doi.org/10.1021/acsenergylett.8b02408
Tarascon J. M.; Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414, 359-367. doi:10.1038/35104644http://dx.doi.org/10.1038/35104644
Xie J.; Lu Y. C. A retrospective on lithium-ion batteries. Nat. Commun., 2020, 11, 2499. doi:10.1038/s41467-020-16259-9http://dx.doi.org/10.1038/s41467-020-16259-9
Chou S. L.; Yu Y. Next generation batteries: aim for the future. Adv. Energy Mater., 2017, 7, 1703223. doi:10.1002/aenm.201703223http://dx.doi.org/10.1002/aenm.201703223
Mei J.; Liao T.; Kou L. Z.; Sun Z. Q. Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries. Adv. Mater., 2017, 29, 1700176. doi:10.1002/adma.201700176http://dx.doi.org/10.1002/adma.201700176
Li M.; Lu J. Cobalt in lithium-ion batteries. Science, 2020, 367(6481), 979-980. doi:10.1126/science.aba9168http://dx.doi.org/10.1126/science.aba9168
Zhao, W. J. A forum on batteries: from lithium-ion to the next generation. Natl. Sci. Rev., 2020, 7(7), 1263-1268. doi:10.1093/nsr/nwaa068http://dx.doi.org/10.1093/nsr/nwaa068
Choudhary N.; Li C.; Moore J.; Nagaiah N.; Zhai L.; Jung Y.; Thomas J. Asymmetric supercapacitor electrodes and devices. Adv. Mater., 2017, 29(21), 1605336. doi:10.1002/adma.201605336http://dx.doi.org/10.1002/adma.201605336
Chatterjee D. P.; Nandi A. K. A review on the recent advances in hybrid supercapacitors. J. Mater. Chem. A, 2021, 9(29), 15880-15918. doi:10.1039/d1ta02505hhttp://dx.doi.org/10.1039/d1ta02505h
Han M. H.; Gonzalo E.; Singh G.; Rojo T. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci., 2015, 8, 81-102. doi:10.1039/c4ee03192jhttp://dx.doi.org/10.1039/c4ee03192j
Zhang X.; Xie H.; Kim C. S.; Zaghib K.; Mauger A.; Julien C. M. Advances in lithium-sulfur batteries. Mater. Sci. Eng. R Rep., 2017, 121, 1-29. doi:10.1016/j.mser.2017.09.001http://dx.doi.org/10.1016/j.mser.2017.09.001
Yuan W. Y.; Zhang Y. N.; Cheng L. F.; Wu H.; Zheng L. X.; Zhao D. L. The applications of carbon nanotubes and graphene in advanced rechargeable lithium batteries. J. Mater. Chem. A, 2016, 4(23), 8932-8951. doi:10.1039/c6ta01546hhttp://dx.doi.org/10.1039/c6ta01546h
Liu H.; Liu X. X.; Li W.; Guo X.; Wang Y.; Wang G. X.; Zhao D. Y. Porous carbon composites for next generation rechargeable lithium batteries. Adv. Energy Mater., 2017, 7, 1700283. doi:10.1002/aenm.201700283http://dx.doi.org/10.1002/aenm.201700283
Xu Z. L.; Kim J. K.; Kang K. Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today, 2018, 19, 84-107. doi:10.1016/j.nantod.2018.02.006http://dx.doi.org/10.1016/j.nantod.2018.02.006
Lee W.; Muhammad S.; Sergey C.; Lee H.; Yoon J.; Kang Y. M.; Yoon W. S. Advances in the cathode materials for lithium rechargeable batteries. Angew. Chem. Int. Ed., 2020, 59(7), 2578. doi:10.1002/anie.201902359http://dx.doi.org/10.1002/anie.201902359
Jain R.; Lakhnot A. S.; Bhimani K.; Sharma S.; Mahajani V.; Panchal R. A.; Kamble M.; Han F. D.; Wang C. S.; Koratkar N. Nanostructuring versus microstructuring in battery electrodes. Nat. Rev. Mater., 2022, 7, 736-746. doi:10.1038/s41578-022-00454-9http://dx.doi.org/10.1038/s41578-022-00454-9
Zhan R. M.; Ren D. S.; Liu S. Y.; Chen Z. X.; Liu X. R.; Wang W. Y.; Fu L.; Wang X. C.; Tu S. B.; Ou Y. T.; Ge H. L.; Wong A. J. Y.; Seh Z. W.; Wang L.; Sun Y. M. A paradigm of calendaring-driven electrode microstructure for balanced battery energy density and power density. Adv. Energy Mater., 2023, 13, 2202544. doi:10.1002/aenm.202202544http://dx.doi.org/10.1002/aenm.202202544
Wang P.; Qi X. H.; Zhao W.; Qian M.; Bi H.; Huang F. Q. Nitrogen-doped hierarchical few-layered porous carbon for efficient electrochemical energy storage. Carbon Energy, 2021, 3, 349-359. doi:10.1002/cey2.78http://dx.doi.org/10.1002/cey2.78
Deng X. L.; Wei Z. X.; Cui C. Y.; Liu Q. H.; Wang C. Y.; Ma J. M. Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage. J. Mater. Chem. A, 2018, 6(9), 4013-4022. doi:10.1039/c7ta11301chttp://dx.doi.org/10.1039/c7ta11301c
Sun B. Y.; Lou S. F.; Zheng W.; Qian Z. Y.; Cui C.; Zuo P. J.; Du C. Y.; Xie J. Y.; Wang J. J.; Yin G. P. Synergistic engineering of defects and architecture in Co3O4@C nanosheets toward Li/Na ion batteries with enhanced pseudocapacitances. Nano Energy, 2020, 78, 105366. doi:10.1016/j.nanoen.2020.105366http://dx.doi.org/10.1016/j.nanoen.2020.105366
Tzadikov J.; Levy N. R.; Abisdris L.; Cohen R.; Weitman M.; Kaminker I.; Goldbourt A.; Ein-Eli Y.; Shalom M. Bottom-up synthesis of advanced carbonaceous anode materials containing sulfur for Na-ion batteries. Adv. Funct. Mater., 2020, 30(19), 2000592. doi:10.1002/adfm.202000592http://dx.doi.org/10.1002/adfm.202000592
Qian J.; Wu F.; Ye Y. S.; Zhang M. L.; Huang Y. X.; Xing Y.; Qu W.; Li L.; Chen R. J. Boosting fast sodium storage of a large-scalable carbon anode with an ultralong cycle life. Adv. Energy Mater., 2018, 8, 1703159. doi:10.1002/aenm.201703159http://dx.doi.org/10.1002/aenm.201703159
Hu F. Y.; Wang J. Y.; Hu S.; Li L. F.; Wang G.; Qiu J. S.; Jian X. G. Inherent N,O-containing carbon frameworks as electrode materials for high-performance supercapacitors. Nanoscale, 2016, 8, 16323-16331. doi:10.1039/c6nr05146dhttp://dx.doi.org/10.1039/c6nr05146d
Hu F. Y.; Wang J. Y.; Hu S.; Li L. F.; Shao W. L.; Qiu J. S.; Lei Z. B.; Deng W. Q.; Jian X. G. Engineered fabrication of hierarchical frameworks with tuned pore structure and N,O-co-doping for high-performance supercapacitors. ACS Appl. Mater. Interfaces, 2017, 9(37), 31940-31949. doi:10.1021/acsami.7b09801http://dx.doi.org/10.1021/acsami.7b09801
Hu F. Y.; Zhang T. P.; Wang J. Y.; Liu C.; Li S. M.; Hu S.; Jian X. G. Simple fabrication of high-efficiency N, O, F, P-containing electrodes through host-guest doping for high-performance supercapacitors. ACS Sustain. Chem. Eng., 2018, 6(11), 15764-15772. doi:10.1021/acssuschemeng.8b04331http://dx.doi.org/10.1021/acssuschemeng.8b04331
Hu F. Y.; Zhang T. P.; Wang J. Y.; Li S. M.; Liu C.; Song C.; Shao W. L.; Liu S. Y.; Jian X. G. Constructing N,O-containing micro/mesoporous covalent triazine-based frameworks toward a detailed analysis of the combined effect of N,O heteroatoms on electrochemical performance. Nano Energy, 2020, 74, 104789. doi:10.1016/j.nanoen.2020.104789http://dx.doi.org/10.1016/j.nanoen.2020.104789
Shao W. L.; Hu F. Y.; Song C.; Wang J. Y.; Liu C.; Weng Z. H.; Jian X. G. Hierarchical N/S co-doped carbon anodes fabricated through a facile ionothermal polymerization for high-performance sodium ion batteries. J. Mater. Chem. A, 2019, 7(11), 6363-6373. doi:10.1039/c8ta11921jhttp://dx.doi.org/10.1039/c8ta11921j
Hu F. Y.; Liu S. Y.; Li S. M.; Liu C.; Yu G. P.; Song C.; Shao W. L.; Zhang T. P.; Jian X. G. High and ultra-stable energy storage from all-carbon sodium-ion capacitor with 3D framework carbon as cathode and carbon nanosheet as anode. J. Energy Chem., 2021, 55, 304-312. doi:10.1016/j.jechem.2020.06.034http://dx.doi.org/10.1016/j.jechem.2020.06.034
Liu S. Y.; Hu F. Y.; Shao W. L.; Zhang W. S.; Zhang T. P.; Song C.; Yao M.; Huang H.; Jian X. G. A novel strategy of in situ trimerization of cyano groups between the Ti3C2Tx (MXene) interlayers for high-energy and high-power sodium-ion capacitors. Nano-Micro Lett., 2020, 12, 135. doi:10.1007/s40820-020-00473-7http://dx.doi.org/10.1007/s40820-020-00473-7
Zhang T. P.; Hu F. Y.; Shao W. L.; Liu S. Y.; Peng H.; Song Z. H.; Song C.; Li N.; Jian X. G. Sulfur-rich polymers based cathode with epoxy/ally dual-sulfur-fixing mechanism for high stability lithium-sulfur battery. ACS Nano, 2021, 15(9), 15027-15038. doi:10.1021/acsnano.1c05330http://dx.doi.org/10.1021/acsnano.1c05330
Shao W. L.; Hu F. Y.; Liu S. Y.; Zhang T. P.; Song C.; Weng Z. H.; Wang J. Y.; Jian X. G. Carbon spheres with rational designed surface and secondary particle-piled structures for fast and stable sodium storage. J. Energy Chem., 2021, 54, 368-376. doi:10.1016/j.jechem.2020.06.031http://dx.doi.org/10.1016/j.jechem.2020.06.031
Zhang L. L.; Zhao X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev., 2009, 38(9), 2520-2531. doi:10.1039/b813846jhttp://dx.doi.org/10.1039/b813846j
Li K. L.; Li J. P.; Zhu Q. Z.; Xu B. Three-dimensional MXenes for supercapacitors. Small Methods, 2022, 6, 2101537. doi:10.1002/smtd.202101537http://dx.doi.org/10.1002/smtd.202101537
Lobato B.; Suárez L.; Guardia L.; Centeno T. A. Capacitance and surface of carbons in supercapacitors. Carbon, 2017, 122, 434-445. doi:10.1016/j.carbon.2017.06.083http://dx.doi.org/10.1016/j.carbon.2017.06.083
Lyu L. L.; Antink W. H.; Kim Y. S.; Kim C. W.; Hyeon T.; Piao Y. Z. Recent development of flexible and stretchable supercapacitors using transition metal compounds as electrode materials. Small, 2021, 17(36), 2101974. doi:10.1002/smll.202101974http://dx.doi.org/10.1002/smll.202101974
Wang Y. Q.; Ding Y.; Guo X. L.; Yu G. H. Conductive polymers for stretchable supercapacitors. Nano Res., 2019, 12, 1978-1987. doi:10.1007/s12274-019-2296-9http://dx.doi.org/10.1007/s12274-019-2296-9
Afzal A.; Abuilaiwi F. A.; Habib A.; Awais M.; Waje S. B.; Atieh M. A. Polypyrrole/carbon nanotube supercapacitors: technological advances and challenges. J. Power Sources, 2017, 352, 174-186. doi:10.1016/j.jpowsour.2017.03.128http://dx.doi.org/10.1016/j.jpowsour.2017.03.128
Meng Q. F.; Cai K. F.; Chen Y. X.; Chen L. D. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy, 2017, 36, 268-285. doi:10.1016/j.nanoen.2017.04.040http://dx.doi.org/10.1016/j.nanoen.2017.04.040
Li H. L.; Wang J. X.; Chu Q. X.; Wang Z.; Zhang F. B.; Wang S. C. Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J. Power Sources, 2009, 190(2), 578-586. doi:10.1016/j.jpowsour.2009.01.052http://dx.doi.org/10.1016/j.jpowsour.2009.01.052
Roberts M. E.; Wheeler D. R.; McKenzie B. B.; Bunker B. C. High specific capacitance conducting polymer supercapacitor electrodes based on poly(tris(thiophenylphenyl)amine). J. Mater. Chem., 2009, 19(38), 6977-6979. doi:10.1039/b916666ahttp://dx.doi.org/10.1039/b916666a
Zhong M. Z.; Zhang M.; Li X. F. Carbon nanomaterials and their composites for supercapacitors. Carbon Energy, 2022, 4(5), 950-985. doi:10.1002/cey2.219http://dx.doi.org/10.1002/cey2.219
Tang R.; Nomura K.; Inoue K.; Kotani M.; Kyotani T.; Nishihara H. Capacitance of edge-free three-dimensional graphene: new perspectives on the design of carbon structures for supercapacitor applications. Electrochim. Acta, 2022, 429, 141009. doi:10.1016/j.electacta.2022.141009http://dx.doi.org/10.1016/j.electacta.2022.141009
Sun C.; Guo Z. G.; Zhou M.; Li X. Y.; Cai Z. S.; Ge F. Y. Heteroatoms-doped porous carbon electrodes with three-dimensional self-supporting structure derived from cotton fabric for high-performance wearable supercapacitors. J. Power Sources, 2021, 482, 228934. doi:10.1016/j.jpowsour.2020.228934http://dx.doi.org/10.1016/j.jpowsour.2020.228934
Shan D. D.; Yang J.; Liu W.; Yan J.; Fan Z. J. Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors. J. Mater. Chem. A, 2016, 4(35), 13589-13602. doi:10.1039/c6ta05406dhttp://dx.doi.org/10.1039/c6ta05406d
Xiong C. Y.; Li B. B.; Lin X.; Liu H. G.; Xu Y. J.; Mao J. J.; Duan C.; Li T. H.; Ni Y. H. The recent progress on three-dimensional porous graphene-based hybrid structure for supercapacitor. Compos. B Eng., 2019, 165, 10-46. doi:10.1016/j.compositesb.2018.11.085http://dx.doi.org/10.1016/j.compositesb.2018.11.085
Wang P.; Zhang G.; Li M. Y.; Yin Y. X.; Li J. Y.; Li G.; Wang W. P.; Peng W.; Cao F. F.; Guo Y. G. Porous carbon for high-energy density symmetrical supercapacitor and lithium-ion hybrid electrochemical capacitors. Chem. Eng. J., 2019, 375, 122020. doi:10.1016/j.cej.2019.122020http://dx.doi.org/10.1016/j.cej.2019.122020
Wang H. W.; Zhu C. R.; Chao D. L.; Yan Q. Y.; Fan H. J. Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater., 2017, 29(46), 1702093. doi:10.1002/adma.201702093http://dx.doi.org/10.1002/adma.201702093
Ding J.; Hu W. B.; Paek E.; Mitlin D. Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev., 2018, 118(14), 6457-6498. doi:10.1021/acs.chemrev.8b00116http://dx.doi.org/10.1021/acs.chemrev.8b00116
Ding Y. Q.; Yang B. J.; Chen J. T.; Zhang L.; Li J. S.; Li Y. L.; Yan X. B. Nanotube-like hard carbon as high-performance anode material for sodium ion hybrid capacitors. Sci. China Mater., 2018, 61, 285-295. doi:10.1007/s40843-017-9141-7http://dx.doi.org/10.1007/s40843-017-9141-7
Thangavel R.; Ponraj R.; Kannan A. G.; Kaliyappan K.; Kim D. W.; Chen Z. W.; Lee Y. S. High performance organic sodium-ion hybrid capacitors based on nano-structured disodium rhodizonate rivaling inorganic hybrid capacitors. Green Chem., 2018, 20(21), 4920-4931. doi:10.1039/c8gc01987hhttp://dx.doi.org/10.1039/c8gc01987h
Yu X. L.; Deng J. J.; Zhan C. Z.; Lv R. T.; Huang Z. H.; Kang F. Y. A high-power lithium-ion hybrid electrochemical capacitor based on citrate-derived electrodes. Electrochim. Acta, 2017, 228, 76-81. doi:10.1016/j.electacta.2017.01.058http://dx.doi.org/10.1016/j.electacta.2017.01.058
Liu S. Y.; Shao W. L.; Zhang W. S.; Zhang T. P.; Song C.; Yao M.; Huang H.; Jian X. G.; Hu F. Y. Regulating microstructures of soft carbon anodes by terminations of Ti3C2Tx MXene toward fast and stable sodium storage. Nano Energy, 2021, 87, 106097. doi:10.1016/j.nanoen.2021.106097http://dx.doi.org/10.1016/j.nanoen.2021.106097
Delmas C. Sodium and sodium-ion batteries. Adv. Energy Mater., 2018, 8(17), 1703137. doi:10.1002/aenm.201703137http://dx.doi.org/10.1002/aenm.201703137
Liu Q. N.; Hu Z.; Chen M. Z.; Zou C.; Jin H. L.; Wang S.; Chou S. L.; Dou S. X. Recent progress of layered transition metal oxide cathodes for sodium-ion batteries. Small, 2019, 15(32), 1805381. doi:10.1002/smll.201805381http://dx.doi.org/10.1002/smll.201805381
Bianchini M.; Xiao P. H.; Wang Y.; Ceder G. Additional sodium insertion into polyanionic cathodes for higher-energy na-ion batteries. Adv. Energy Mater., 2017, 7(18), 1700514. doi:10.1002/aenm.201700514http://dx.doi.org/10.1002/aenm.201700514
Peng J.; Zhang W.; Liu Q. N.; Wang J. Z.; Chou S. L.; Liu H. K.; Dou S. X. Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater., 2022, 34(15), 2108384. doi:10.1002/adma.202108384http://dx.doi.org/10.1002/adma.202108384
Lao M. M.; Zhang Y.; Luo W. B.; Yan Q. Y.; Sun W. P.; Dou S. X. Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater., 2017, 29(48), 1700622. doi:10.1002/adma.201700622http://dx.doi.org/10.1002/adma.201700622
Wang S. T.; Dong Y. H.; Cao F. J.; Li Y. T.; Zhang Z. T.; Tang Z. L. Conversion-type mno nanorods as a surprisingly stable anode framework for sodium-ion batteries. Adv. Funct. Mater., 2020, 30(19), 2001026. doi:10.1002/adfm.202001026http://dx.doi.org/10.1002/adfm.202001026
Xiao B. W.; Rojo T.; Li X. L. Hard carbon as sodium-ion battery anodes: progress and challenges. ChemSusChem, 2019, 12(1), 133-144. doi:10.1002/cssc.201801879http://dx.doi.org/10.1002/cssc.201801879
Xie L. J.; Tang C.; Song M. X.; Guo X. Q.; Li X. M.; Li J. X.; Yan C.; Kong Q. Q.; Sun G. H.; Zhang Q.; Su F. Y.; Chen C. M. Molecular-scale controllable conversion of biopolymers into hard carbons towards lithium and sodium ion batteries. J. Energy Chem., 2022, 72, 554-569. doi:10.1016/j.jechem.2022.05.006http://dx.doi.org/10.1016/j.jechem.2022.05.006
Chen X. Y.; Tian J. Y.; Li P.; Fang Y. L.; Fang Y. J.; Liang X. M.; Feng J. W.; Dong J.; Ai X. P.; Yang H. X.; Cao Y. L. An overall understanding of sodium storage behaviors in hard carbons by an "adsorption-intercalation/filling" hybrid mechanism. Adv. Energy Mater., 2022, 12(24), 2200886. doi:10.1002/aenm.202200886http://dx.doi.org/10.1002/aenm.202200886
Hou H. S.; Qiu X. Q.; Wei W. F.; Zhang Y.; Ji X. B. Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater., 2017, 7, 1602898. doi:10.1002/aenm.201602898http://dx.doi.org/10.1002/aenm.201602898
Shao W. L.; Hu F. Y.; Zhang T. P.; Liu S. Y.; Song C.; Li N.; Weng Z. H.; Wang J. Y.; Jian X. G. Engineering ultramicroporous carbon with abundant C=O as extended "slope-dominated" sodium ion battery anodes. ACS Sustain. Chem. Eng., 2021, 9(29), 9727-9739. doi:10.1021/acssuschemeng.1c01885http://dx.doi.org/10.1021/acssuschemeng.1c01885
Shao W. L.; Cao Q.; Liu S. Y.; Zhang T. P.; Song Z. H.; Song C.; Weng Z. H.; Jian X. G.; Hu F. Y. Replacing "alkyl" with "aryl" for inducing accessible channels to closed pores as plateau-dominated sodium-ion battery anode. SusMat, 2022, 2(3), 319-334. doi:10.1002/sus2.68http://dx.doi.org/10.1002/sus2.68
Deng N. P.; Li Y. N.; Li Q. X.; Zeng Q.; Luo S. B.; Wang H.; Kang W. M.; Cheng B. W. Multi-functional yolk-shell structured materials and their applications for high-performance lithium ion battery and lithium sulfur battery. Energy Storage Mater., 2022, 53, 684-743. doi:10.1016/j.ensm.2022.08.003http://dx.doi.org/10.1016/j.ensm.2022.08.003
Liu T. F.; Hu H. L.; Ding X. F.; Yuan H. D.; Jin C. B.; Nai J. W.; Liu Y. J.; Wang Y.; Wan Y. H.; Tao X. Y. 12 Years roadmap of the sulfur cathode for lithium sulfur batteries (2009-2020). Energy Storage Mater., 2020, 30, 346-366. doi:10.1016/j.ensm.2020.05.023http://dx.doi.org/10.1016/j.ensm.2020.05.023
Guo J. L.; Pei H. Y.; Dou Y.; Zhao S. Y.; Shao G. S.; Liu J. P. Rational designs for lithium-sulfur batteries with low electrolyte/sulfur ratio. Adv. Funct. Mater., 2021, 31, 2010499. doi:10.1002/adfm.202010499http://dx.doi.org/10.1002/adfm.202010499
Zhang Q.; Huang Q. H.; Hao S. M.; Deng S. Y.; He Q. M.; Lin Z. Q.; Yang Y. K. Polymers in lithium-sulfur batteries. Adv. Sci., 2022, 9, 2103798. doi:10.1002/advs.202103798http://dx.doi.org/10.1002/advs.202103798
Hu F. Y.; Peng H.; Zhang T. P.; Shao W. L.; Liu S. Y.; Wang J. Y.; Wang C. H.; Jian X. G. A lightweight nitrogen/oxygen dual-doping carbon nanofiber interlayer with meso-/ micropores for high-performance lithium-sulfur batteries. J. Energy Chem., 2021, 58, 115-123. doi:10.1016/j.jechem.2020.09.032http://dx.doi.org/10.1016/j.jechem.2020.09.032
Peng H.; Zhang T. P.; Shao W. L.; Liu S. Y.; Hu F. Y. All MOF-derived-carbon material-based integrated electrode constructed by carbon nanosheet sulfur host and Fe microparticles with carbon nanofiber network interlayer for lithium-sulfur batteries. Appl. Surf. Sci., 2021, 569, 150935. doi:10.1016/j.apsusc.2021.150935http://dx.doi.org/10.1016/j.apsusc.2021.150935
Zhang T. P.; Hu F. Y.; Song C.; Li S. M.; Shao W. L.; Liu S. Y.; Peng H.; Hu S.; Jian X. G. Constructing covalent triazine-based frameworks to explore the effect of heteroatoms and pore structure on electrochemical performance in Li-S batteries. Chem. Eng. J., 2021, 407, 127141. doi:10.1016/j.cej.2020.127141http://dx.doi.org/10.1016/j.cej.2020.127141
0
Views
64
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution