浏览全部资源
扫码关注微信
1.重庆交通大学材料科学与工程学院 重庆 400074
2.中国工程物理研究院化学材料研究所 绵阳 621900
3.Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, Mo 63110
Feng Wang, E-mail: wfbgc@cqjtu.edu.cn
Xu-dong Cui, E-mail: xudcui@caep.cn
Yan-hao Huang, E-mail: huangyh@cqjtu.edu.cn
Published:20 April 2024,
Published Online:19 February 2024,
Received:12 November 2023,
Accepted:05 January 2024
移动端阅览
胥娥, 黄宇, 熊璐璐, 况涵钊, 郑海, 王燚, 夏小超, 王锋, 崔旭东, 黄炎昊. 光致驱动聚醚的主/侧链结构设计及光致形变性能调控. 高分子学报, 2024, 55(4), 438-451
Xu, E.; Huang Y.; Xiong L. L.; Kuang, H. Z.; Zheng, H.; Wang, Y.; Xia, X. C.; Wang, F.; Cui, X. D.; Huang, Y. H. Backbone/branched chain structure tailoring and photoinduced deformability controlling of photodriven polyethers. Acta Polymerica Sinica, 2024, 55(4), 438-451
胥娥, 黄宇, 熊璐璐, 况涵钊, 郑海, 王燚, 夏小超, 王锋, 崔旭东, 黄炎昊. 光致驱动聚醚的主/侧链结构设计及光致形变性能调控. 高分子学报, 2024, 55(4), 438-451 DOI: 10.11777/j.issn1000-3304.2023.23261.
Xu, E.; Huang Y.; Xiong L. L.; Kuang, H. Z.; Zheng, H.; Wang, Y.; Xia, X. C.; Wang, F.; Cui, X. D.; Huang, Y. H. Backbone/branched chain structure tailoring and photoinduced deformability controlling of photodriven polyethers. Acta Polymerica Sinica, 2024, 55(4), 438-451 DOI: 10.11777/j.issn1000-3304.2023.23261.
报道了一种通过开环聚合与点击化学侧基修饰制备的后功能化光敏性聚醚材料. 以烯丙基缩水甘油醚(AGE)为前驱体,通过新戊酸铯催化可控阴离子开环聚合(ROP)获得聚烯丙基缩水甘油醚(PAGE),并通过巯基-烯(Thiol-ene)点击化学和酯化两步反应将光敏基团肉桂酰氯引入到PAGE侧链上,合成了具有光敏特性的聚醚. PAGE的主链长度与肉桂酰氯侧基接枝率可分别通过调控单体/引发剂比例与反应时间灵活调控. 将所得侧链修饰后的PAGE预聚物进行光固化成型,获得的光敏性聚酯薄膜具有较低的玻璃化转变温度(
T
g
),同时可在365和254 nm波长紫外光照下发生可逆[2+2]环加成反应,展现出快速可逆的变形特征. 本工作通过开环聚合与点击化学反应设计优化了聚醚主侧链结构,为拓宽光功能性聚醚的使用温度窗口、提升其光致变形灵敏度提供了思路,有望使所得材料进一步在药物可控释放、柔性智能机器人等领域得到更加广泛的应用.
A post-functionalized photosensitive polyether material prepared by ring-opening polymerization (ROP)
as well as side group modification that conducted by "click chemistry" is reported in this work. Allyl glycidyl ether (AGE) was used as the precursor to prepare poly(allyl glycidyl ether) (PAGE) by anionic ring-opening polymerization under the catalysis of cesium pivalate. Then the photosensitive moieties of cinnamoyl chloride were introduced onto side chains of PAGE prepolymer by two-step reactions of thiol-ene "click chemistry" and esterification
aiming to prepare polyether with photosensitive properties. The main chain length of PAGE prepolymer and the grafting rate of cinnamoyl chloride side groups can be flexibly controlled by adjusting the monomer/initiator ratio and grafting reaction time
respectively. After casted and photocured
the photosensitive PAGE film possesses a low glass transition temperature (
T
g
)
and exhibits rapid and reversible deformation characteristic undergoing a reversible [2+2] cycloaddition reaction triggered by ultraviolet light with a wavelength of 365 and 254 nm. From the aspect of designing and optimizing the polyether main chain/side branches structure
via
ring-opening polymerization and "click chemistry" reaction design
the results provide practical ideas for broadening the service temperature window of photo-functional polyether
and improving its photo-induced deformation sensitivity. The obtained polyether materials also show some potential applications in the fields of controlled drug release and flexible intelligent robots.
烯丙基缩水甘油醚聚醚肉桂酰氯光响应光致形变
Allyl glycidyl etherPolyetherCinnamyl chloridePhoto-responsivenessPhoto-induced deformation
Kim D.; Lee H. S.; Yoon J. Highly bendable bilayer-type photo-actuators comprising of reduced graphene oxide dispersed in hydrogels. Sci. Rep., 2016, 6, 20921. doi:10.1038/srep20921http://dx.doi.org/10.1038/srep20921
Li C.; Kazem-Rostami M.; Seale J. S. W.; Zhou S. L.; Stupp S. I. Macroscopic actuation of bisazo hydrogels driven by molecular photoisomerization. Chem. Mater., 2023, 35(10), 3923-3930. doi:10.1021/acs.chemmater.3c00062http://dx.doi.org/10.1021/acs.chemmater.3c00062
Guo Y. T.; Chen Y. J.; Yu Q. L.; Liu H. Z.; Li H.; Yu Y. X. Ultra-tough and stress-free two-way shape memory polyurethane induced by polymer segment "Spring". Chem. Eng. J., 2023, 470, 144212. doi:10.1016/j.cej.2023.144212http://dx.doi.org/10.1016/j.cej.2023.144212
Bhatti M. R. A.; Kernin A.; Tausif M.; Zhang H.; Papageorgiou D.; Bilotti E.; Peijs T.; Bastiaansen C. W. M. Light-driven actuation in synthetic polymers: a review from fundamental concepts to applications. Adv. Opt. Mater., 2022, 10(10), 2102186. doi:10.1002/adom.202102186http://dx.doi.org/10.1002/adom.202102186
Huang S.; Huang Y. L.; Li Q. Photodeformable liquid crystalline polymers containing functional additives: toward photomanipulatable intelligent soft systems. Small Struct., 2021, 2(9), 2170024. doi:10.1002/sstr.202170024http://dx.doi.org/10.1002/sstr.202170024
Li M. T.; Wang X.; Dong B.; Sitti M. In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuator. Nat. Commun., 2020, 11(1), 3988. doi:10.1038/s41467-020-17775-4http://dx.doi.org/10.1038/s41467-020-17775-4
Wang M.; Cheng Z. W.; Zuo B.; Chen X. M.; Huang S.; Yang H. Liquid crystal elastomer electric locomotives. ACS Macro Lett., 2020, 9(6), 860-865. doi:10.1021/acsmacrolett.0c00333http://dx.doi.org/10.1021/acsmacrolett.0c00333
Li Y. X.; Liu L. C.; Xu H.; Cheng Z. H.; Yan J. H.; Xie X. M. Biomimetic gradient hydrogel actuators with ultrafast thermo-responsiveness and high strength. ACS Appl. Mater. Interfaces, 2022, 14(28), 32541-32550. doi:10.1021/acsami.2c07631http://dx.doi.org/10.1021/acsami.2c07631
Ji Z. Y.; Yan C. Y.; Yu B.; Wang X. L.; Zhou F. Multimaterials 3D printing for free assembly manufacturing of magnetic driving soft actuator. Adv. Mater. Interfaces, 2017, 4(22), 1700629. doi:10.1002/admi.201700629http://dx.doi.org/10.1002/admi.201700629
Lang C.; Lloyd E. C.; Matuszewski K. E.; Xu Y. F.; Ganesan V.; Huang R.; Kumar M.; Hickey R. J. Nanostructured block copolymer muscles. Nat. Nanotechnol., 2022, 17(7), 752-758. doi:10.1038/s41565-022-01133-0http://dx.doi.org/10.1038/s41565-022-01133-0
Liang R.X.; Yu H.J.; Wang L.; Wang N.; Amin B. U. NIR light-triggered shape memory polymers based on mussel-inspired iron-catechol complexes. Adv. Funct. Mater., 2021, 31(32), 2102621. doi:10.1002/adfm.202102621http://dx.doi.org/10.1002/adfm.202102621
Yang Z. F.; Li J. H.; Chen X.; Fan Y. N.; Huang J.; Yu H. F.; Yang S.; Chen E. Q. Precisely controllable artificial muscle with continuous morphing based on "Breathing" of supramolecular columns. Adv. Mater., 2023, 35(14), e2211648. doi:10.1002/adma.202211648http://dx.doi.org/10.1002/adma.202211648
Peng B.; Chen X. L.; Yu G. D.; Xu F.; Yang R. Y.; Yu Z. H.; Wei J.; Zhu G. D.; Qin L.; Zhang J. Y.; Shen Q. D.; Yu Y. L. A neuron-readable artificial photoreceptor composed of photodeformable liquid crystal polymers and piezoelectric materials. Adv. Funct. Mater., 2023, 33(23), 2214172. doi:10.1002/adfm.202214172http://dx.doi.org/10.1002/adfm.202214172
Wen W.; Chen A.H. The self-assembly of single chain janus nanoparticles from azobenzene-containing block copolymers and reversible photoinduced morphology transitions. Polym. Chem., 2021, 12(16), 2447-2456. doi:10.1039/d1py00223fhttp://dx.doi.org/10.1039/d1py00223f
Yin L.; Miao T. F.; Cheng X. X.; Jiang Z. C.; Tong X.; Zhang W.; Zhao Y. Chiral liquid crystalline elastomer for twisting motion without preset alignment of mesogens. ACS Macro Lett., 2021, 10(6), 690-696. doi:10.1021/acsmacrolett.1c00286http://dx.doi.org/10.1021/acsmacrolett.1c00286
Hu J.; Feng Z. B.; Xu X. W.; Gao W. S.; Ning N. Y.; Yu B.; Zhang L. Q.; Tian M. UV reconfigurable shape memory polyurethane with a high recovery ratio under large deformation. Ind. Eng. Chem. Res., 2021, 60(5), 2144-2153. doi:10.1021/acs.iecr.0c05036http://dx.doi.org/10.1021/acs.iecr.0c05036
Zhao X.; Chen Y.; Peng B.; Wei J.; Yu Y. L. A facile strategy for the development of recyclable multifunctional liquid crystal polymers via post-polymerization modification and ring-opening metathesis polymerization. Angew. Chem. Int. Ed., 2023, 62(21), e202300699. doi:10.1002/anie.202300699http://dx.doi.org/10.1002/anie.202300699
Blankenburg J.; Maciol K.; Hahn C.; Frey H. Poly(ethylene glycol) with multiple aldehyde functionalities opens up a rich and versatile post-polymerization chemistry. Macromolecules, 2019, 52(4), 1785-1793. doi:10.1021/acs.macromol.8b02639http://dx.doi.org/10.1021/acs.macromol.8b02639
Linker O.; Blankenburg J.; Maciol K.; Bros M.; Frey H. Ester functional epoxide monomers for random and gradient poly(ethylene glycol) polyelectrolytes with multiple carboxylic acid moieties. Macromolecules, 2020, 53(9), 3524-3534. doi:10.1021/acs.macromol.9b02320http://dx.doi.org/10.1021/acs.macromol.9b02320
Blankenburg J.; Frey H. Aminal protection of epoxide monomer permits the introduction of multiple secondary amine moieties at poly(ethylene glycol). Macromol. Rapid Commun., 2019, 40(12), 1900057. doi:10.1002/marc.201900057http://dx.doi.org/10.1002/marc.201900057
Herzberger J.; Frey H. Epicyanohydrin: polymerization by monomer activation gives access to nitrile-, amino-, and carboxyl-functional poly(ethylene glycol). Macromolecules, 2015, 48(22), 8144-8153. doi:10.1021/acs.macromol.5b02178http://dx.doi.org/10.1021/acs.macromol.5b02178
Johann T.; Kemmer-Jonas U.; Barent R. D.; Frey H. Multifunctional Fe(III)-binding polyethers from hydroxamic acid-based epoxide monomers. Macromol. Rapid Commun., 2020, 41(1), 1900282. doi:10.1002/marc.201900282http://dx.doi.org/10.1002/marc.201900282
Yang H. J.; Sun A. B.; Chai C. Q.; Huang W. Y.; Xue X. Q.; Chen J. H.; Jiang B. B. Synthesis and post-functionalization of a degradable aliphatic polyester containing allyl pendent groups. Polymer, 2017, 121, 256-261. doi:10.1016/j.polymer.2017.06.029http://dx.doi.org/10.1016/j.polymer.2017.06.029
Toncheva-Moncheva N.; Dangalov M.; Vassilev N. G.; Novakov C. P. Thiol-ene coupling reaction achievement and monitoring by "in situ" UV irradiation NMR spectroscopy. RSC Adv., 2020, 10(42), 25214-25222. doi:10.1039/d0ra03902khttp://dx.doi.org/10.1039/d0ra03902k
Obermeier B.; Frey H. Poly(ethylene glycol-co-allyl glycidyl ether)s: a PEG-based modular synthetic platform for multiple bioconjugation. Bioconjugate Chem., 2011, 22(3), 436-444. doi:10.1021/bc1004747http://dx.doi.org/10.1021/bc1004747
Hatakeyama-Sato K.; Kimura S.; Matsumoto S.; Oyaizu K. Facile synthesis of poly(glycidyl ether)s with ionic pendant groups by thiol-ene reactions. Macromol. Rapid Commun., 2020, 41(1), 1900399. doi:10.1002/marc.201900399http://dx.doi.org/10.1002/marc.201900399
Viviani M.; Meereboer N. L.; Saraswati N. L. P. A.; Loos K.; Portale G. Lithium and magnesium polymeric electrolytes prepared using poly(glycidyl ether)-based polymers with short grafted chains. Polym. Chem., 2020, 11(12), 2070-2079. doi:10.1039/c9py01735fhttp://dx.doi.org/10.1039/c9py01735f
Le Devedec F.; Won A.; Oake J.; Houdaihed L.; Bohne C.; Yip C. M.; Allen C. Postalkylation of a common mPEG-b-PAGE precursor to produce tunable morphologies of spheres, filomicelles, disks, and polymersomes. ACS Macro Lett., 2016, 5(1), 128-133. doi:10.1021/acsmacrolett.5b00791http://dx.doi.org/10.1021/acsmacrolett.5b00791
Lu Y. J.; Gao X. D.; Cao M.; Wu B.; Su L. F.; Chen P.; Miao J. B.; Wang S.; Xia R.; Qian J. S. Interface crosslinked mPEG-b-PAGE-b-PCL triblock copolymer micelles with high stability for anticancer drug delivery. Colloids Surf. B Biointerfaces, 2020, 189, 110830. doi:10.1016/j.colsurfb.2020.110830http://dx.doi.org/10.1016/j.colsurfb.2020.110830
Kost B.; Gonciarz W.; Krupa A.; Socka M.; Rogala M.; Biela T.; Brzeziński M. pH-Tunable nanoparticles composed of copolymers of lactide and allyl-glycidyl ether with various functionalities for the efficient delivery of anti-cancer drugs. Colloids Surf. B Biointerfaces, 2021, 204, 111801. doi:10.1016/j.colsurfb.2021.111801http://dx.doi.org/10.1016/j.colsurfb.2021.111801
Mallela Y. L. N. K.; Kim S.; Seo G.; Kim J. W.; Kumar S.; Lee J.; Lee J. S. Crosslinked poly(allyl glycidyl ether) with pendant nitrile groups as solid polymer electrolytes for Li-S batteries. Electrochim. Acta, 2020, 362, 137141. doi:10.1016/j.electacta.2020.137141http://dx.doi.org/10.1016/j.electacta.2020.137141
Hans M.; Keul H.; Moeller M. Chain transfer reactions limit the molecular weight of polyglycidol prepared via alkali metal based initiating systems. Polymer, 2009, 50(5), 1103-1108. doi:10.1016/j.polymer.2009.01.012http://dx.doi.org/10.1016/j.polymer.2009.01.012
Erberich M.; Keul H.; Möller M. Polyglycidols with two orthogonal protective groups: preparation, selective deprotection, and functionalization. Macromolecules, 2007, 40(9), 3070-3079. doi:10.1021/ma0627875http://dx.doi.org/10.1021/ma0627875
Persson J. C.; Jannasch P. Intrinsically proton-conducting comb-like copolymers with benzimidazole tethered to the side chains. Solid State Ion., 2006, 177(7-8), 653-658. doi:10.1016/j.ssi.2005.12.030http://dx.doi.org/10.1016/j.ssi.2005.12.030
Gao T. L.; Xia X. C.; Tajima K.; Yamamoto T.; Isono T.; Satoh T. Polyether/polythioether synthesis via ring-opening polymerization of epoxides and episulfides catalyzed by alkali metal carboxylates. Macromolecules, 2022, 55(21), 9373-9383. doi:10.1021/acs.macromol.2c00656http://dx.doi.org/10.1021/acs.macromol.2c00656
Deng K. R.; Wang S. J.; Ren S.; Han D. M.; Xiao M.; Meng Y. Z. A novel single-ion-conducting polymer electrolyte derived from CO2-based multifunctional polycarbonate. ACS Appl. Mater. Interfaces, 2016, 8(49), 33642-33648. doi:10.1021/acsami.6b11384http://dx.doi.org/10.1021/acsami.6b11384
Yano S.; Iwase T.; Teramoto N.; Shimasaki T.; Shibata M. Synthesis, thermal properties and cell-compatibility of photocrosslinked cinnamoyl-modified hydroxypropyl cellulose. Carbohydr. Polym., 2018, 184, 418-426. doi:10.1016/j.carbpol.2017.12.087http://dx.doi.org/10.1016/j.carbpol.2017.12.087
Sung S. J.; Yun J. H.; Lee S.; Park J. K.; Kim D. H.; Cho K. Y. Poly(ε-caprolactone) diol functionalized with a cinnamoyl group and its UV-triggered in-plane alignment. React. Funct. Polym., 2010, 70(9), 622-629. doi:10.1016/j.reactfunctpolym.2010.06.004http://dx.doi.org/10.1016/j.reactfunctpolym.2010.06.004
Tunc D.; Le Coz C.; Alexandre M.; Desbois P.; Lecomte P.; Carlotti S. Reversible cross-linking of aliphatic polyamides bearing thermo- and photoresponsive cinnamoyl moieties. Macromolecules, 2014, 47(23), 8247-8254. doi:10.1021/ma502083phttp://dx.doi.org/10.1021/ma502083p
Almutairi F. M.; Monier M.; Alatawi R. A. S.; Alhawiti A. S.; Al-Rasheed H. H.; Almutairi T. M.; Elsayed N. H. Synthesis of photo-crosslinkable hydrogel membranes for entrapment of lactase enzyme. React. Funct. Polym., 2022, 172, 105159. doi:10.1016/j.reactfunctpolym.2022.105159http://dx.doi.org/10.1016/j.reactfunctpolym.2022.105159
Durand P. L.; Brège A.; Chollet G.; Grau E.; Cramail H. Simple and efficient approach toward photosensitive biobased aliphatic polycarbonate materials. ACS Macro Lett., 2018, 7(2), 250-254. doi:10.1021/acsmacrolett.8b00003http://dx.doi.org/10.1021/acsmacrolett.8b00003
0
Views
198
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution