浏览全部资源
扫码关注微信
1.浙江科技大学环境与资源学院 杭州 310023
2.浙江大学高分子科学与工程学系 高分子功能构造与合成教育部重点实验室 杭州 310058
Lu Chen, E-mail: chenlu94@zju.edu.cn
Miao Du, E-mail: dumiao@zju.edu.cn
Published:20 August 2024,
Published Online:09 May 2024,
Received:15 November 2023,
Accepted:05 February 2024
移动端阅览
胡志军, 孙钟媛, 陈华, 陈璐, 杜淼, 宋义虎, 郑强. 亲-亲/疏-疏双子界面在复杂流体中润滑行为的研究. 高分子学报, 2024, 55(8), 1081-1090
Hu, Z. J.; Sun, Z. Y.; Chen, H.; Chen, L.; Du, M.; Song, Y. H.; Zheng, Q. Studies on the lubrication between hydrophilic-hydrophilic/hydrophobic-hydrophobic gemini interfaces and complex fluids. Acta Polymerica Sinica, 2024, 55(8), 1081-1090
胡志军, 孙钟媛, 陈华, 陈璐, 杜淼, 宋义虎, 郑强. 亲-亲/疏-疏双子界面在复杂流体中润滑行为的研究. 高分子学报, 2024, 55(8), 1081-1090 DOI: 10.11777/j.issn1000-3304.2023.23263.
Hu, Z. J.; Sun, Z. Y.; Chen, H.; Chen, L.; Du, M.; Song, Y. H.; Zheng, Q. Studies on the lubrication between hydrophilic-hydrophilic/hydrophobic-hydrophobic gemini interfaces and complex fluids. Acta Polymerica Sinica, 2024, 55(8), 1081-1090 DOI: 10.11777/j.issn1000-3304.2023.23263.
植入医用软材料摩擦行为对材料植入效果及副作用有决定性影响. 分别以临床常用聚二甲基硅氧烷(PDMS)弹性体及类生物组织材料聚丙烯酰胺(PAM)水凝胶为摩擦副,采用丙烯酸衍生聚合物(EMT-10)水分散液为摩擦介质,构建摩擦系统,研究摩擦曲线变化趋势及其影响因素. 结果显示,疏水PDMS弹性体对EMT-10聚合物具有较强的吸附作用,其润滑液层由摩擦界面吸附和受限空间束缚的EMT-10聚合物链共同构成. 与疏水PDMS弹性体相比,亲水PAM水凝胶与EMT-10聚合物链吸附作用弱,润滑液层由水凝胶表面本体网链和束缚EMT-10聚合物链组成. 相对液膜厚度参数可关联界面性质与润滑介质流变行为,判断摩擦系统所处摩擦曲线区域及变化趋势.
The frictional behaviors of implant soft materials
in vivo
are important to medical effect. In this study
hydroxyethyl acrylate sodium/acryloyldimethyl taurate copolymer (EMT-10) aqueous dispersions are adopted
acting as lubricants in hydrophobic polydimethylsiloxane elastomer (PDMS) Gemini interfaces or hydrophilic polyamide hydrogel (PAM) Gemini interfaces
respectively. The associations exist in EMT-10 aqueous dispersions
via
hydrogen bonding
electrostatic and hydrophobic interactions
similar to bio-lubricants. The EMT-10 aqueous dispersions
surface characteristics of Gemini interfaces and the axial force (
N
a
) during frictional experiments in Stribeck curves are studied. Under low and high concentrations of EMT-10 lubricant
the PDMS Gemini interfaces exhibit opposing sensitivity to
N
a
different from the PAM Gemini interfaces
which always showing
lower CoF at higher
N
a
. This phenomenon results from the various degree of perfection for lubrication film between the Gemini interfaces. To further distinguish the lubrication film formation
and correlate frictional surface characteristic and rheological behaviors of lubricant
a new parameter
relative thickness (
φ
)
is established. When
φ
<
1
the lubrication film is discrete
and the boundary lubrication regime plays dominant role during the frictional test. When
φ
>
1
the entire lubrication film forms and the whole system enters hydrodynamic lubrication regime. For PDMS Gemini interfaces
the lubrication film is composed of the confined and adsorbed EMT-10 polymer chains owing to the strong attraction between the hydrophobic surface and the C-C backbone. As a result
the lubrication film is greatly affected by the concentration of the lubricant thus
φ
increases. The PDMS frictional system gradually converts from the boundary into hydrodynamic lubrication regime. For PAM Gemini interfaces
the film is made of the hydrogel surface mesh and the confined EMT-10 chains
so
φ
is always larger than 1
exhibiting the characteristic of hydrodynamic lubrication regime. The study tends to probe the frictional behavior of the complex fluids in the soft Gemini interfaces and unveils the mechanism behind the phenomenon.
润滑双子界面硅橡胶水凝胶
LubricationGemini interfacesPolydimethylsiloxane elastomerHydrogel
Song J.; Winkeljann B.; Lieleg O. Biopolymer-based coatings: promising strategies to improve the biocompatibility and functionality of materials used in biomedical engineering. Adv. Mater. Interfaces, 2020, 7(17), 2000850. doi:10.1002/admi.202000850http://dx.doi.org/10.1002/admi.202000850
Ansari-Asl Z.; Shahvali Z.; Sacourbaravi R.; Hoveizi E.; Darabpour E. Cu(Ⅱ) metal-organic framework@ polydimethylsiloxane nanocomposite sponges coated by chitosan for antibacterial and tissue engineering applications. Microporous Mesoporous Mater., 2022, 336, 111866. doi:10.1016/j.micromeso.2022.111866http://dx.doi.org/10.1016/j.micromeso.2022.111866
Primavera R.; Razavi M.; Kevadiya B. D.; Wang J.; Vykunta A.; Di Mascolo D.; Decuzzi P.; Thakor A. S. Enhancing islet transplantation using a biocompatible collagen-PDMS bioscaffold enriched with dexamethasone-microplates. Biofabrication, 2021, 13(3), 035011. doi:10.1088/1758-5090/abdcachttp://dx.doi.org/10.1088/1758-5090/abdcac
Wang J.; Qian S.; Yu J. B.; Zhang Q.; Yuan Z. Y.; Sang S. B.; Zhou X. H.; Sun L. N. Flexible and wearable PDMS-based triboelectric nanogenerator for self-powered tactile sensing. Nanomaterials, 2019, 9(9), 1304. doi:10.3390/nano9091304http://dx.doi.org/10.3390/nano9091304
Ciubotaru B. I.; Zaltariov M. F.; Tugui C.; Stoleru I. E.; Peptanariu D.; Stiubianu G. T.; Vornicu N.; Cazacu M. Silicones with different crosslinking patterns: assessment from the perspective of their suitability for biomaterials. Surf. Interfaces, 2022, 32, 102168. doi:10.1016/j.surfin.2022.102168http://dx.doi.org/10.1016/j.surfin.2022.102168
Xia X. K.; Wang X. H.; Zhang W.; Han X. L.; Chen P.; Jiang Y. Improving the wettability and antiprotein adsorption property of PDMS by swelling-deswelling approach. J. Coat. Technol. Res., 2019, 16(2), 353-361. doi:10.1007/s11998-018-0070-7http://dx.doi.org/10.1007/s11998-018-0070-7
Pitenis A. A.; Urueña J. M.; Hart S. M.; O'Bryan C. S.; Marshall S. L.; Levings P. P.; Angelini T. E.; Sawyer W. G. Friction-induced inflammation. Tribol. Lett., 2018, 66(3), 81. doi:10.1007/s11249-018-1029-7http://dx.doi.org/10.1007/s11249-018-1029-7
Efron N. Contact lens wear is intrinsically inflammatory. Clin. Exp. Optom., 2017, 100(1), 3-19. doi:10.1111/cxo.12487http://dx.doi.org/10.1111/cxo.12487
Stapleton F.; Stretton S.; Papas E.; Skotnitsky C.; Sweeney D. F. Silicone hydrogel contact lenses and the ocular surface. Ocul. Surf., 2006, 4(1), 24-43. doi:10.1016/s1542-0124(12)70262-8http://dx.doi.org/10.1016/s1542-0124(12)70262-8
Rudy A.; Kuliasha C.; Uruena J.; Rex J.; Schulze K. D.; Stewart D.; Angelini T.; Sawyer W. G.; Perry S. S. Lubricous hydrogel surface coatings on polydimethylsiloxane (PDMS). Tribol. Lett., 2016, 65(1), 3. doi:10.1007/s11249-016-0783-7http://dx.doi.org/10.1007/s11249-016-0783-7
Liu K. P.; Zhang F. J.; Wei Y.; Hu Q. S.; Luo Q. F.; Chen C.; Wang J. Y.; Yang L.; Luo R. F.; Wang Y. B. Dressing blood-contacting materials by a stable hydrogel coating with embedded antimicrobial peptides for robust antibacterial and antithrombus properties. ACS Appl. Mater. Interfaces, 2021, 13(33), 38947-38958. doi:10.1021/acsami.1c05167http://dx.doi.org/10.1021/acsami.1c05167
Li J. F.; Zhou F.; Wang X. L. Modify the friction between steel ball and PDMS disk under water lubrication by surface texturing. Meccanica, 2011, 46(3), 499-507. doi:10.1007/s11012-010-9298-8http://dx.doi.org/10.1007/s11012-010-9298-8
Bongaerts J. H. H.; Fourtouni K.; Stokes J. R. Soft-tribology: lubrication in a compliant PDMS-PDMS contact. Tribol. Int., 2007, 40(10-12), 1531-1542. doi:10.1016/j.triboint.2007.01.007http://dx.doi.org/10.1016/j.triboint.2007.01.007
He B.; Chen W.; Wang Q. J. Surface texture effect on friction of a microtextured poly(dimethylsiloxane) (PDMS). Tribol. Lett., 2008, 31(3), 187-197. doi:10.1007/s11249-008-9351-0http://dx.doi.org/10.1007/s11249-008-9351-0
Huang W.; Jiang L.; Zhou C. X.; Wang X. L. The lubricant retaining effect of micro-dimples on the sliding surface of PDMS. Tribol. Int., 2012, 52, 87-93. doi:10.1016/j.triboint.2012.03.003http://dx.doi.org/10.1016/j.triboint.2012.03.003
Chen L.; Hu W. X.; Du M.; Song Y. H.; Wu Z. L.; Zheng Q. Bioinspired, recyclable, stretchable hydrogel with boundary ultralubrication. ACS Appl. Mater. Interfaces, 2021, 13(35), 42240-42249. doi:10.1021/acsami.1c12631http://dx.doi.org/10.1021/acsami.1c12631
Senkler J.; Senkler M.; Eubel H.; Hildebrandt T.; Lengwenus C.; Schertl P.; Schwarzländer M.; Wagner S.; Wittig I.; Braun H. P. The mitochondrial complexome of arabidopsis thaliana. Plant J., 2017, 89(6), 1079-1092. doi:10.1111/tpj.13448http://dx.doi.org/10.1111/tpj.13448
Stone J. M.; Walker J. C. Plant protein kinase families and signal transduction. Plant Physiol., 1995, 108(2), 451-457. doi:10.1104/pp.108.2.451http://dx.doi.org/10.1104/pp.108.2.451
Laursen B. S.; Sørensen H. P.; Mortensen K. K.; Sperling-Petersen H. U. Initiation of protein synthesis in bacteria. Microbiol. Mol. Biol. Rev., 2005, 69(1), 101-123. doi:10.1128/mmbr.69.1.101-123.2005http://dx.doi.org/10.1128/mmbr.69.1.101-123.2005
Bendtsen J. D.; Kiemer L.; Fausbøll A.; Brunak S. Non-classical protein secretion in bacteria. BMC Microbiol., 2005, 5, 58. doi:10.1186/1471-2180-5-58http://dx.doi.org/10.1186/1471-2180-5-58
陈璐, 张振华, 罗绍强, 高颖, 张晨, 胡流云, 杜淼, 宋义虎, 郑强. 丙烯酸羟乙酯/丙烯酰二甲基牛磺酸钠共聚物流变行为的研究. 高分子学报, 2019, 50(1), 91-98. doi:10.11777/j.issn1000-3304.2018.18156http://dx.doi.org/10.11777/j.issn1000-3304.2018.18156
Chen L.; Hu W. X.; Cui Y. B.; Du M.; Song Y. H.; Wu Z. L.; Zheng Q. Friction behavior of rough polydimethylsiloxane surfaces under hydrophobic polymer aqueous solution conditions. Polym. Test., 2021, 101, 107281. doi:10.1016/j.polymertesting.2021.107281http://dx.doi.org/10.1016/j.polymertesting.2021.107281
Chen L.; Zhang Z. H.; Deng J. J.; Luo S. Q.; Gao Y.; Zhang C.; Hu L. Y.; Du M.; Song Y. H.; Wu Z. L.; Zheng Q. Insight into acrylate copolymer dispersion with multiple interactions using large-amplitude oscillation shear. Polymer, 2021, 212, 123130. doi:10.1016/j.polymer.2020.123130http://dx.doi.org/10.1016/j.polymer.2020.123130
The Dow Chemical Company. SYLGARDTM 184 Silicone Elastomer https://www.dow.com/content/dam/dcc/documents/ en-us/productdatasheet/11/11-31/11-3184-sylgard-184-elastomer.pdf?iframe=true (accessed 2021-02-21)https://www.dow.com/content/dam/dcc/documents/en-us/productdatasheet/11/11-31/11-3184-sylgard-184-elastomer.pdf?iframe=true(accessed2021-02-21).
Janssen D.; de Palma R.; Verlaak S.; Heremans P.; Dehaen W. Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide. Thin Solid Films, 2006, 515(4), 1433-1438. doi:10.1016/j.tsf.2006.04.006http://dx.doi.org/10.1016/j.tsf.2006.04.006
Guo Z. M.; Hakkou R.; Yang J. G.; Wang Y. L. Effects of surface heterogeneities on wetting and contact line dynamics as observed with the captive bubble technique. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 615, 126041. doi:10.1016/j.colsurfa.2020.126041http://dx.doi.org/10.1016/j.colsurfa.2020.126041
Kurth D. G.; Bein T. Surface reactions on thin layers of silane coupling agents. Langmuir, 1993, 9(11), 2965-2973. doi:10.1021/la00035a039http://dx.doi.org/10.1021/la00035a039
Gong J. P.; Kagata G.; Osada Y. Friction of gels. 4. Friction on charged gels. J. Phys. Chem. B, 1999, 103(29), 6007-6014. doi:10.1021/jp990256vhttp://dx.doi.org/10.1021/jp990256v
Kurokawa T.; Tominaga T.; Katsuyama Y.; Kuwabara R.; Furukawa H.; Osada Y.; Gong J. P. Elastic-hydrodynamic transition of gel friction. Langmuir, 2005, 21(19), 8643-8648. doi:10.1021/la050635hhttp://dx.doi.org/10.1021/la050635h
Zheng P. W.; McCarthy T. J. Rediscovering silicones: molecularly smooth, low surface energy, unfilled, UV/vis-transparent, cross-linkedextremely, stablethermally, hard, elasticPDMS. Langmuir, 2010, 26(24), 18585-18590. doi:10.1021/la104065ehttp://dx.doi.org/10.1021/la104065e
Fuard D.; Tzvetkova-Chevolleau T.; Decossas S.; Tracqui P.; Schiavone P. Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectron. Eng., 2008, 85(5), 1289-1293. doi:10.1016/j.mee.2008.02.004http://dx.doi.org/10.1016/j.mee.2008.02.004
Liu J. J.; Yang C. H.; Yin T. H.; Wang Z. J.; Qu S. X.; Suo Z. G. Polyacrylamide hydrogels. Ⅱ. Elastic dissipater. J. Mech. Phys. Solids, 2019, 133, 103737. doi:10.1016/j.jmps.2019.103737http://dx.doi.org/10.1016/j.jmps.2019.103737
Glumac M.; Ritzoulis C.; Chen J. S. Surface properties of adsorbed salivary components at a solid hydrophobic surface using a quartz crystal microbalance with dissipation (QCM-D). Food Hydrocoll., 2019, 97, 105195. doi:10.1016/j.foodhyd.2019.105195http://dx.doi.org/10.1016/j.foodhyd.2019.105195
Fang Y.; Yong J. L.; Cheng Y.; Yang Q.; Hou X.; Chen F. Liquid-infused slippery stainless steel surface prepared by alcohol-assisted femtosecond laser ablation. Adv. Mater. Interfaces, 2021, 8(5), 2001334. doi:10.1002/admi.202001334http://dx.doi.org/10.1002/admi.202001334
Tominaga T.; Kurokawa T.; Furukawa H.; Osada Y.; Gong J. P. Friction of a soft hydrogel on rough solid substrates. Soft Matter, 2008, 4(8), 1645-1652. doi:10.1039/b802568ahttp://dx.doi.org/10.1039/b802568a
徐朋朋, 杜淼, 郑强. 制备参数对聚乙烯醇水凝胶-玻璃基板摩擦行为的影响. 高分子学报, 2014, (5), 708-714.
0
Views
213
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution