浏览全部资源
扫码关注微信
上海市先进聚合物材料重点实验室 华东理工大学材料科学与工程学院 上海 200237
Bin-bin Xu, E-mail: binbinxu@ecust.edu.cn
Shao-liang Lin, E-mail: slin@ecust.edu.cn
Published:20 April 2024,
Published Online:26 January 2024,
Received:21 November 2023,
Accepted:15 December 2023
移动端阅览
姚远, 何品, 陶鑫峰, 徐彬彬, 林绍梁. 含偶氮苯侧链不对称分子刷聚合物的合成及其自组装研究. 高分子学报, 2024, 55(4), 407-418
Yao, Y.; He, P.; Tao, X. F.; Xu, B. B.; Lin, S. L. Synthesis and self-assembly of asymmetric molecular brushes with azobenzene-containing side chains. Acta Polymerica Sinica, 2024, 55(4), 407-418
姚远, 何品, 陶鑫峰, 徐彬彬, 林绍梁. 含偶氮苯侧链不对称分子刷聚合物的合成及其自组装研究. 高分子学报, 2024, 55(4), 407-418 DOI: 10.11777/j.issn1000-3304.2023.23269.
Yao, Y.; He, P.; Tao, X. F.; Xu, B. B.; Lin, S. L. Synthesis and self-assembly of asymmetric molecular brushes with azobenzene-containing side chains. Acta Polymerica Sinica, 2024, 55(4), 407-418 DOI: 10.11777/j.issn1000-3304.2023.23269.
设计合成了含有2-羰基溴和烷基氯基团的功能性丙烯酸酯单体(Br-acrylate-Cl),利用可逆加成断裂链转移(RAFT)聚合得到大分子试剂poly(Br-acrylate-Cl). 首先通过poly(Br-acrylate-Cl)引发偶氮苯丙烯酸酯单体(Azo)的原子转移自由基聚合(ATRP),然后用取代反应接入六甘醇修饰的四苯乙烯(OH-TPE-HEG),合成了同时含有偶氮苯侧链、四苯乙烯侧基和六甘醇侧链的不对称分子刷聚合物PA-
g
-PAzo/(TPE-HEG). 偶氮苯侧链和四苯乙烯侧基的
π
-
π
相互作用和有序堆积,赋予了PA-
g
-PAzo/(TPE-HEG)组装体规整的分子排布. 系统研究了PA-
g
-PAzo/(TPE-HEG)在甲醇/四氢呋喃混合溶剂中的自组装行为,得到了束状、捆状和片状等形貌组装体,并探究了捆状组装体的形成过程以及组装体的光响应形貌调控. 本文的研究不仅提供了构建不对称分子刷聚合物的新合成方法,还丰富了分子刷组装体的种类.
Self-assembly of amphiphilic copolymers presents a promising platform for the design and synthesis of nanomaterials
depending heavily on the topological polymer chemistry and properties of their compositions. In particular
asymmetric molecular brushes are composed of two different side chains grafted on a linear backbone
possessing distinct assembly behaviors in comparison with conventional linear copolymers
owing to the asymmetric double-brushes and combined effects of backbone and brushes. Additionally
the introduction of unique functionalities and responsiveness into the self-assembly system of asymmetric molecular brushes endows extra opportunities to pursue morphologic diversity and intriguing functionalities. In this study
a novel functional acrylate monomer Br-acrylate-Cl with Br-containing initiating group and alkylchlorine group was designed and synthesized. The functional macro-agent
poly(Br-acrylate-Cl)
was first prepared by reversible addition-fragmentation chain transfer (RAFT) homopolymerization of Br-acrylate-Cl monomer. Azobenzene-containing side chains were then directly grown from the backbone
via
atom transfer radical polymerization (ATRP) of azobenzene-containing monomer initiated by the pendant Br-containing initiating groups on the backbone
affording PA-
g
-PAzo molecular brushes. The obtained PA-
g
-PAzo molecular brushes were subsequently used in postpolymerization substitution to generate PA-
g
-PAzo/(TPE-HEG) asymmetric molecular brushes with azobenzene and hexaethylene glycol-containing side chains and tetraphenylethylene groups. Due to the special architecture and inter/intramolecular association of pendant azobenzene and tetraphenylethylene groups
PA-
g
-PAzo/(TPE-HEG) asymmetric molecular brushes exhibited unique self-assembly behavior. Therefore
π
-
π
and solvophobic interaction-driven self-assembly of PA-
g
-PAzo/(TPE-HEG) in CH
3
OH-THF mixed solvents was studied
and the morphologies of the assemblies were characterized by transmission electron microscopy (TEM). Well-defined bundle-like aggregates
sheaf-like aggregates
and 2D platelets were constructed
via
self-assembly of PA-
g
-PAzo/(TPE-HEG) through a heating-cooling-aging process. The formation of sheaf-like aggregates was systematically investgated. Intriguingly
the azobenzene moieties undergo
trans
-
cis
isomerization upon UV irradiation and further promote a morphology evolution of the assemblies
leading to the formation of rectangular platelets. Our study presents an efficient method for preparing asymmetric molecular brushes based on the functional monomer stragtegy
and opens a new avenue to design molecular-brush-based nanomaterials with tunable morphologies.
分子刷偶氮苯捆状组装体光响应性自组装
Molecular brushesAzobenzeneSheaf-like aggregatePhoto-responsivenessSelf-assembly
Riess G. Micellization of block copolymers. Prog. Polym. Sci., 2003, 28(7), 1107-1170. doi:10.1016/s0079-6700(03)00015-7http://dx.doi.org/10.1016/s0079-6700(03)00015-7
Mai Y. Y.; Eisenberg A. Self-assembly of block copolymers. Chem. Soc. Rev., 2012, 41(18), 5969-5985. doi:10.1039/c2cs35115chttp://dx.doi.org/10.1039/c2cs35115c
He W. N.; Xu J. T. Crystallization assisted self-assembly of semicrystalline block copolymers. Prog. Polym. Sci., 2012, 37(10), 1350-1400. doi:10.1016/j.progpolymsci.2012.05.002http://dx.doi.org/10.1016/j.progpolymsci.2012.05.002
Zhang J.; Chen X. F.; Wei H. B.; Wan X. H. Tunable assembly of amphiphilic rod-coil block copolymers in solution. Chem. Soc. Rev., 2013, 42(23), 9127-9154. doi:10.1039/c3cs60192ghttp://dx.doi.org/10.1039/c3cs60192g
Song Y.; Xiang B.; Huang X. Y.; Lu G. L.; Feng C. Living crystallization-driven self-assembly of oligo(p-phenylene vinylene)-containing block copolymers: impact of branched structure of alkyl side chain of π-conjugated segment. Chinese J. Polym. Sci., 2023, 41(4), 574-584. doi:10.1007/s10118-023-2893-7http://dx.doi.org/10.1007/s10118-023-2893-7
Nie J. C.; Huang X. Y.; Lu G. L.; Winnik M. A.; Feng C. Living crystallization-driven self-assembly of linear and V-shaped oligo(p-phenylene ethynylene)-containing block copolymers: architecture effect of π-conjugated crystalline segment. Macromolecules, 2022, 55(17), 7856-7868. doi:10.1021/acs.macromol.2c01273http://dx.doi.org/10.1021/acs.macromol.2c01273
Gröschel A. H.; Walther A.; Löbling T. I.; Schacher F. H.; Schmalz H.; Müller A. H. Guided hierarchical co-assembly of soft patchy nanoparticles. Nature, 2013, 503(7475), 247-251. doi:10.1038/nature12610http://dx.doi.org/10.1038/nature12610
Löbling T. I.; Borisov O.; Haataja J. S.; Ikkala O.; Gröschel A. H.; Müller A. H. Rational design of ABC triblock terpolymer solution nanostructures with controlled patch morphology. Nat. Commun., 2016, 7, 12097. doi:10.1038/ncomms12097http://dx.doi.org/10.1038/ncomms12097
Schmelz J.; Karg M.; Hellweg T.; Schmalz H. General pathway toward crystalline-core micelles with tunable morphology and corona segregation. ACS Nano, 2011, 5(12), 9523-9534. doi:10.1021/nn202638thttp://dx.doi.org/10.1021/nn202638t
Jang D.; Heo J. M.; Jannah F.; Khazi M. I.; Son Y. J.; Noh J.; An H.; Park S. M.; Yoon D. K.; Kadamannil N. N.; Jelinek R.; Kim J. M. Stimulus-responsive tubular conjugated polymer 2D nanosheets. Angew. Chem. Int. Ed., 2022, 61(43), e202211465. doi:10.1002/anie.202211465http://dx.doi.org/10.1002/anie.202211465
Ma J. Y.; Ma C.; Huang X. Y.; de Araujo P. H. H.; Goyal A. K.; Lu G. L.; Feng C. Preparation and cellular uptake behaviors of uniform fiber-like micelles with length controllability and high colloidal stability in aqueous media. Fundam. Res., 2023, 3(1), 93-101. doi:10.1016/j.fmre.2022.01.020http://dx.doi.org/10.1016/j.fmre.2022.01.020
Wang Z. Q.; Ma C.; Huang X. Y.; Lu G. L.; Winnik M. A.; Feng C. Self-seeding of oligo(p-phenylenevinylene)-b-poly(2-vinylpyridine) micelles: effect of metal ions. Macromolecules, 2021, 54(14), 6705-6717. doi:10.1021/acs.macromol.1c00965http://dx.doi.org/10.1021/acs.macromol.1c00965
戚家乐, 姚远, 陶鑫峰, 林绍梁. 含芳香侧链聚类肽的合成与自组装. 高分子学报, 2022, 53(12), 1475-1483. doi:10.11777/j.issn1000-3304.2022.22195http://dx.doi.org/10.11777/j.issn1000-3304.2022.22195
Xie G. J.; Martinez M. R.; Olszewski M.; Sheiko S. S.; Matyjaszewski K. Molecular bottlebrushes as novel materials. Biomacromolecules, 2018, 20(1), 27-54. doi:10.1021/acs.biomac.8b01171http://dx.doi.org/10.1021/acs.biomac.8b01171
Feng C.; Huang X. Y. Polymer brushes: efficient synthesis and applications. Acc. Chem. Res., 2018, 51(9), 2314-2323. doi:10.1021/acs.accounts.8b00307http://dx.doi.org/10.1021/acs.accounts.8b00307
Wang Z. L.; Jiang X.; Liu W. B.; Lu G. L.; Huang X. Y. A rapid and operator-safe powder approach for latent fingerprint detection using hydrophilic Fe3O4@SiO2-CdTe nanoparticles. Sci. China Chem., 2019, 62(7), 889-896. doi:10.1007/s11426-019-9460-0http://dx.doi.org/10.1007/s11426-019-9460-0
张常旭, 潘辉, 周永丰. 交替共聚物纳米花的自组装及在单颗粒表面增强拉曼散射检测中的应用. 高分子学报, 2023, 54(5), 687-696.
李玉莲, 宋东坡, 李悦生. 三嵌段共聚物刷诱导乳液自组装制备响应性多孔结构色微球. 高分子学报, 2021, 52(12), 1591-1602. doi:10.11777/j.issn1000-3304.2021.21146http://dx.doi.org/10.11777/j.issn1000-3304.2021.21146
Rzayev J. Molecular bottlebrushes: new opportunities in nanomaterials fabrication. ACS Macro Lett., 2012, 1(9), 1146-1149. doi:10.1021/mz300402xhttp://dx.doi.org/10.1021/mz300402x
Verduzco R.; Li X. Y.; Pesek S. L.; Stein G. E. Structure, function, self-assembly, and applications of bottlebrush copolymers. Chem. Soc. Rev., 2015, 44(8), 2405-2420. doi:10.1039/c4cs00329bhttp://dx.doi.org/10.1039/c4cs00329b
姚灏, 王景霞, 田威. 超分子拓扑高分子: 合成、组装及功能. 高分子学报, 2021, 52(6), 578-601. doi:10.11777/j.issn1000-3304.2021.21010http://dx.doi.org/10.11777/j.issn1000-3304.2021.21010
Wang M. Q.; Zou H.; Liu W. B.; Liu N.; Wu Z. Q. Bottlebrush polymers based on RAFT and the "C1" polymerization method: controlled synthesis and application in anticancer drug delivery. ACS Macro Lett., 2022, 11(2), 179-185. doi:10.1021/acsmacrolett.1c00706http://dx.doi.org/10.1021/acsmacrolett.1c00706
向略, 朱雯, 隆美林, 张科, 陈永明. 三嵌段刷状共聚物的合成及溶液组装制备多孔纳米粒子. 高分子学报, 2018, (7), 917-929. doi:10.11777/j.issn1000-3004.2018.18043http://dx.doi.org/10.11777/j.issn1000-3004.2018.18043
孙子扬, 李华安, 黄华华, 石毅, 陈永明. 聚合物分子刷在纳米载体领域的应用. 高分子学报, 2020, 51(6), 609-619. doi:10.11777/j.issn1000-3304.2020.20021http://dx.doi.org/10.11777/j.issn1000-3304.2020.20021
Li Z.; Ma J.; Lee N. S.; Wooley K. L. Dynamic cylindrical assembly of triblock copolymers by a hierarchical process of covalent and supramolecular interactions. J. Am. Chem. Soc., 2011, 133(5), 1228-1231. doi:10.1021/ja109191zhttp://dx.doi.org/10.1021/ja109191z
Obhi N. K.; Jarrett-Wilkins C. N.; Hicks G. E. J.; Seferos D. S. Self-assembly of poly(3-hexylthiophene) bottlebrush polymers into end-on-end linear fiber morphologies. Macromolecules, 2020, 53(19), 8592-8599. doi:10.1021/acs.macromol.0c01641http://dx.doi.org/10.1021/acs.macromol.0c01641
Li C. H.; Ge Z. S.; Fang J.; Liu S. Y. Synthesis and self-assembly of Coil-Rod double hydrophilic diblock copolymer with dually responsive asymmetric centipede-shaped polymer brush as the rod segment. Macromolecules, 2009, 42(8), 2916-2924. doi:10.1021/ma900165zhttp://dx.doi.org/10.1021/ma900165z
Lian X. M.; Wu D. X.; Song X. H.; Zhao H. Y. Synthesis and self-assembly of amphiphilic asymmetric macromolecular brushes. Macromolecules, 2010, 43(18), 7434-7445. doi:10.1021/ma101452hhttp://dx.doi.org/10.1021/ma101452h
Li S. Y.; Liu P.; Wang Z. G.; Lian L.; Zhao Y. L. Multi-tunable aggregation behaviors of thermo/pH-responsive toothbrush-like and jellyfish-like copolymers. Polym. Chem., 2022, 13(7), 877-890. doi:10.1039/d1py01667ahttp://dx.doi.org/10.1039/d1py01667a
Pelras T.; Mahon C. S.; Müllner M. Synthesis and applications of compartmentalised molecular polymer brushes. Angew. Chem. Int. Ed., 2018, 57(24), 6982-6994. doi:10.1002/anie.201711878http://dx.doi.org/10.1002/anie.201711878
Kawamoto K.; Zhong M. J.; Gadelrab K. R.; Cheng L. C.; Ross C. A.; Alexander-Katz A.; Johnson J. A. Graft-through synthesis and assembly of Janus bottlebrush polymers from A-branch-B diblock macromonomers. J. Am. Chem. Soc., 2016, 138(36), 11501-11504. doi:10.1021/jacs.6b07670http://dx.doi.org/10.1021/jacs.6b07670
Xu B. B.; Qian H. Y.; Zhang L.; Lin S. L. Branched aggregates with tunable morphology via hierarchical self-assembly of azobenzene-derived molecular double brushes. Angew. Chem. Int. Ed., 2021, 60(32), 17707-17713. doi:10.1002/anie.202106321http://dx.doi.org/10.1002/anie.202106321
Xu B. B.; Feng C.; Lv Y. S.; Lin S. L.; Lu G. L.; Huang X. Y. Biomimetic asymmetric polymer brush coatings bearing fencelike conformation exhibit superior protection and antifouling performance. ACS Appl. Mater. Interfaces, 2020, 12(1), 1588-1596. doi:10.1021/acsami.9b19230http://dx.doi.org/10.1021/acsami.9b19230
Pang X. L.; Lv J. A.; Zhu C. Y.; Qin L.; Yu Y. L. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators. Adv. Mater., 2019, 31(52), 1904224. doi:10.1002/adma.201904224http://dx.doi.org/10.1002/adma.201904224
Sun Y.; Xu B. B.; Li J. J.; Wang Y. Q.; Li X. X.; Lin S. L. Formation of hierarchical platelets with morphological control by self-assembly of an azobenzene-containing liquid crystalline diblock copolymer. Mater. Chem. Front., 2022, 6(12), 1615-1622. doi:10.1039/d2qm00325bhttp://dx.doi.org/10.1039/d2qm00325b
Wang D.; Tang B. Z. Aggregation-induced emission luminogens for activity-based sensing. Acc. Chem. Res., 2019, 52(9), 2559-2570. doi:10.1021/acs.accounts.9b00305http://dx.doi.org/10.1021/acs.accounts.9b00305
Li J.; Wang J. X.; Li H. X.; Song N.; Wang D.; Tang B. Z. Supramolecular materials based on AIE luminogens (AIEgens): construction and applications. Chem. Soc. Rev., 2020, 49(4), 1144-1172. doi:10.1039/c9cs00495ehttp://dx.doi.org/10.1039/c9cs00495e
Song S. F.; Zhou H.; Ye S. Y.; Tam J.; Howe J. Y.; Manners I.; Winnik M. A. Spherulite-like micelles. Angew. Chem. Int. Ed., 2021, 60(19), 10950-10956. doi:10.1002/anie.202101177http://dx.doi.org/10.1002/anie.202101177
Wang M. J.; Han L.; Zhu Y. L.; Qi R.; Tian L. L.; He F. Formation of hierarchical architectures with dimensional and morphological control in the self-assembly of conjugated block copolymers. Small Meth., 2020, 4(2), 1900470. doi:10.1002/smtd.202070006http://dx.doi.org/10.1002/smtd.202070006
Liu H.; Xu B. B.; Yang X. Y.; Li Z. Y.; Mo Z.; Yao Y.; Lin S. L. Ultraviolet and infrared two-wavelength modulated self-healing materials based on azobenzene-functionalized carbon nanotubes. Compos. Commun., 2020, 19, 233-238. doi:10.1016/j.coco.2020.03.014http://dx.doi.org/10.1016/j.coco.2020.03.014
Mayadunne R. T. A.; Rizzardo E.; Chiefari J.; Chong Y. K.; Moad G.; Thang S. H. Living radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization) using dithiocarbamates as chain transfer agents. Macromolecules, 1999, 32(21), 6977-6980. doi:10.1021/ma9906837http://dx.doi.org/10.1021/ma9906837
Le A. N.; Liang R. Q.; Zhong M. J. Synthesis and self-assembly of mixed-graft block copolymers. Chem. Eur. J., 2019, 25(35), 8177-8189. doi:10.1002/chem.201900520http://dx.doi.org/10.1002/chem.201900520
Xu B. B.; Feng C.; Huang X. Y. A versatile platform for precise synthesis of asymmetric molecular brush in one shot. Nat. Commun., 2017, 8(1), 333. doi:10.1038/s41467-017-00365-2http://dx.doi.org/10.1038/s41467-017-00365-2
Barlow T. R.; Brendel J. C.; Perrier S. Poly(bromoethyl acrylate): a reactive precursor for the synthesis of functional RAFT materials. Macromolecules, 2016, 49(17), 6203-6212. doi:10.1021/acs.macromol.6b00721http://dx.doi.org/10.1021/acs.macromol.6b00721
Qi R.; Zhu Y. L.; Han L.; Wang M. J.; He F. Rectangular platelet micelles with controlled aspect ratio by hierarchical self-assembly of poly(3-hexylthiophene)-b-poly(ethylene glycol). Macromolecules, 2020, 53(15), 6555-6565. doi:10.1021/acs.macromol.0c01092http://dx.doi.org/10.1021/acs.macromol.0c01092
Tao D. L.; Wang Z. Q.; Huang X. Y.; Tian M. W.; Lu G. L.; Manners I.; Winnik M. A.; Feng C. Continuous and segmented semiconducting fiber-like nanostructures with spatially selective functionalization by living crystallization-driven self-assembly. Angew. Chem. Int. Ed., 2020, 59(21), 8232-8239. doi:10.1002/anie.202000327http://dx.doi.org/10.1002/anie.202000327
Dong R. J.; Zhu B. S.; Zhou Y. F.; Yan D. Y.; Zhu X. Y. "Breathing" vesicles with jellyfish-like on-off switchable fluorescence behavior. Angew. Chem. Int. Ed., 2012, 51(46), 11633-11637. doi:10.1002/anie.201206362http://dx.doi.org/10.1002/anie.201206362
Su W.; Luo Y. H.; Yan Q.; Wu S.; Han K.; Zhang Q. J.; Gu Y. Q.; Li Y. M. Photoinduced fusion of micro-vesicles self-assembled from azobenzene-containing amphiphilic diblock copolymers. Macromol. Rapid Commun., 2007, 28(11), 1251-1256. doi:10.1002/marc.200700077http://dx.doi.org/10.1002/marc.200700077
0
Views
251
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution