浏览全部资源
扫码关注微信
1.中国中化控股有限责任公司 北京 100031
2.北京师范大学化学学院 放射性药物教育部重点实验室 北京 100875
Published:20 August 2024,
Published Online:25 March 2024,
Received:06 December 2023,
Accepted:19 January 2024
移动端阅览
徐静, 吴思捷, 曹玮. 电离辐射诱导药物的释放或激活. 高分子学报, 2024, 55(8), 921-935
Xu, J.; Wu, S. J.; Cao, W. Ionizing radiation triggered drug release or activation. Acta Polymerica Sinica, 2024, 55(8), 921-935
徐静, 吴思捷, 曹玮. 电离辐射诱导药物的释放或激活. 高分子学报, 2024, 55(8), 921-935 DOI: 10.11777/j.issn1000-3304.2023.23278.
Xu, J.; Wu, S. J.; Cao, W. Ionizing radiation triggered drug release or activation. Acta Polymerica Sinica, 2024, 55(8), 921-935 DOI: 10.11777/j.issn1000-3304.2023.23278.
利用医用放疗射线诱导的化学键可控解离,从而释放或激活生物活性化合物,可以用于放疗诱导的靶向化疗. 这种方法利用了辐射射线的精确性和化疗药物的强效细胞毒性,实现对药物的激活或释放在空间和时间上的可控,在临床应用上具有广阔的前景. 本文综述了近年来研究者们报道的电离辐射诱导药物释放或激活的最新策略,包括传统的高分子囊泡和胶束响应、新型二硒键、含碲响应性高分子以及羟基自由基和水合电子响应有机小分子化合物等,分别阐述了不同策略的优势和缺点如作用机制不清楚、辐照响应灵敏度依然较低等,并对电离辐射诱导药物释放策略的研究前景进行了展望,为肿瘤治疗提供了创新策略.
Ionizing radiation has a higher tissue penetration depth than ultraviolet
visible and near-infrared light. It can directly reach tissues and organs inside the human body
making it ideal for clinical applications and as a stimulus to induce drug release or activation for diseased sites in deep tissues. Clinical radiotherapy radiation can potentially cause controlled dissociation of chemical bonds
resulting in the release or activation of biologically active compounds. By exploiting the precision of radiation and the potency of chemotherapeutic agents
this approach allows for spatial and temporal control of drug activation or release
thereby greatly reducing systemic cytotoxicity and potential side effects of the drugs. This review summarizes the recent research progress on ionizing radiation triggered drug release or activation. Herein
we highlight innovative strategies
including conventional polymers vesicles and micelles
novel diselenide or tellurium-containing polymers for drug release
and drug activation using organic small molecules that are responsive to the primary radiolysis species such as hydroxyl radical and hydrated electrons. The pros and cons of different strategies
such as clear mechanism of action
low sensitivity of irradiation response
etc
.
have been described. In addition
future research directions for ionizing radiation-induced drug release strategies are discussed
providing innovative strategies for tumor therapy.
放疗电离辐射药物载体前药药物释放
RadiotherapyIonizing radiationDrug carrierPro-drugDrug release
Siegel R. L.; Miller K. D.; Wagle N. S.; Jemal A. Cancer statistics, 2023. CA A Cancer J. Clin., 2023, 73(1), 17-48. doi:10.3322/caac.21763http://dx.doi.org/10.3322/caac.21763
Galluzzi L.; Humeau J.; Buqué A.; Zitvogel L.; Kroemer G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol., 2020, 17(12), 725-741. doi:10.1038/s41571-020-0413-zhttp://dx.doi.org/10.1038/s41571-020-0413-z
Heinhuis K. M.; Ros W.; Kok M.; Steeghs N.; Beijnen J. H.; Schellens J. H. M. Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors. Ann. Oncol., 2019, 30(2), 219-235. doi:10.1093/annonc/mdy551http://dx.doi.org/10.1093/annonc/mdy551
Cao W.; Gu Y. W.; Meineck M.; Xu H. P. The combination of chemotherapy and radiotherapy towards more efficient drug delivery. Chem., 2014, 9(1), 48-57. doi:10.1002/asia.201301294http://dx.doi.org/10.1002/asia.201301294
Mourits M. P.; van Kempen-Harteveld M. L.; García M. B. G.; Koppeschaar H. P.; Tick L.; Terwee C. B. Radiotherapy for Graves' orbitopathy: randomised placebo-controlled study. Lancet, 2000, 355(9214), 1505-1509. doi:10.1016/s0140-6736(00)02165-6http://dx.doi.org/10.1016/s0140-6736(00)02165-6
Lan G. X.; Ni K. Y.; Xu R. Y.; Lu K. D.; Lin Z. K.; Chan C.; Lin W. B. Nanoscale metal-organic layers for deeply penetrating X-ray-induced photodynamic therapy. Angew. Chem. Int. Ed., 2017, 56(40), 12102-12106. doi:10.1002/anie.201704828http://dx.doi.org/10.1002/anie.201704828
Zhou Z. J.; Chan A.; Wang Z. T.; Huang X. L.; Yu G. C.; Jacobson O.; Wang S.; Liu Y. J.; Shan L. L.; Dai Y. L.; Shen Z. Y.; Lin L. S.; Chen W.; Chen X. Y. Synchronous chemoradiation nanovesicles by X-ray triggered cascade of drug release. Angew. Chem. Int. Ed., 2018, 57(28), 8463-8467. doi:10.1002/anie.201802351http://dx.doi.org/10.1002/anie.201802351
Deng W.; Chen W. J.; Clement S.; Guller A.; Zhao Z. J.; Engel A.; Goldys E. M. Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation. Nat. Commun., 2018, 9(1), 2713. doi:10.1038/s41467-018-05118-3http://dx.doi.org/10.1038/s41467-018-05118-3
Liu H. H.; Laan A. C.; Plomp J.; Parnell S. R.; Men Y. J.; Dalgliesh R. M.; Eelkema R.; Denkova A. G. Ionizing radiation-induced release from poly(ε-caprolactone-b-ethylene glycol) micelles. ACS Appl. Polym. Mater., 2021, 3(2), 968-975. doi:10.1021/acsapm.0c01258http://dx.doi.org/10.1021/acsapm.0c01258
Kildahl N. K. Bond energy data summarized. J. Chem. Educ., 1995, 72(5), 423. doi:10.1021/ed072p423http://dx.doi.org/10.1021/ed072p423
Cao W.; Zhang X. L.; Miao X. M.; Yang Z. M.; Xu H. P. γ-Ray-responsive supramolecular hydrogel based on a diselenide-containing polymer and a peptide. Angew. Chem. Int. Ed., 2013, 52(24), 6233-6237. doi:10.1002/anie.201300662http://dx.doi.org/10.1002/anie.201300662
Ma N.; Xu H. P.; An L. P.; Li J.; Sun Z. W.; Zhang X. Radiation-sensitive diselenide block co-polymer micellar aggregates: toward the combination of radiotherapy and chemotherapy. Langmuir, 2011, 27(10), 5874-5878. doi:10.1021/la2009682http://dx.doi.org/10.1021/la2009682
Li T. Y.; Pan S. J.; Gao S. Q.; Xiang W. T.; Sun C. X.; Cao W.; Xu H. P. Diselenide-pemetrexed assemblies for combined cancer immuno-, radio-, and chemotherapies. Angew. Chem. Int. Ed., 2020, 59(7), 2700-2704. doi:10.1002/anie.201914453http://dx.doi.org/10.1002/anie.201914453
Xu H. P.; Cao W.; Zhang X. Selenium-containing polymers: promising biomaterials for controlled release and enzyme mimics. Acc. Chem. Res., 2013, 46(7), 1647-1658. doi:10.1021/ar4000339http://dx.doi.org/10.1021/ar4000339
Gao S. Q.; Li T. Y.; Guo Y.; Sun C. X.; Xianyu B. R.; Xu H. P. Selenium-containing nanoparticles combine the NK cells mediated immunotherapy with radiotherapy and chemotherapy. Adv. Mater., 2020, 32(12), 1907568. doi:10.1002/adma.201907568http://dx.doi.org/10.1002/adma.201907568
Wang J.; Xu W. G.; Zhang N.; Yang C. S.; Xu H. W.; Wang Z. T.; Li B. S.; Ding J. X.; Chen X. S. X-ray-responsive polypeptide nanogel for concurrent chemoradiotherapy. J. Control. Release, 2021, 332, 1-9. doi:10.1016/j.jconrel.2021.02.003http://dx.doi.org/10.1016/j.jconrel.2021.02.003
Cao W.; Gu Y. W.; Li T. Y.; Xu H. P. Ultra-sensitive ROS-responsive tellurium-containing polymers. Chem. Commun., 2015, 51(32), 7069-7071. doi:10.1039/c5cc01779chttp://dx.doi.org/10.1039/c5cc01779c
Dai Y. H.; Li T. Y.; Zhang Z. H.; Tan Y. Z.; Pan S. J.; Zhang L.; Xu H. P. Oxidative polymerization in living cells. J. Am. Chem. Soc., 2021, 143(28), 10709-10717. doi:10.1021/jacs.1c04821http://dx.doi.org/10.1021/jacs.1c04821
Albert A. Chemical aspects of selective toxicity. Nature, 1958, 182(4633), 421-422. doi:10.1038/182421a0http://dx.doi.org/10.1038/182421a0
Ji X. Y.; Zhong Z. Y. External stimuli-responsive gasotransmitter prodrugs: chemistry and spatiotemporal release. J. Control. Release, 2022, 351, 81-101. doi:10.1016/j.jconrel.2022.09.026http://dx.doi.org/10.1016/j.jconrel.2022.09.026
Jiang Q.; Zhang S. F. Stimulus-responsive drug delivery nanoplatforms for osteoarthritis therapy. Small, 2023, 19(23), 2206929. doi:10.1002/smll.202206929http://dx.doi.org/10.1002/smll.202206929
Lomax M. E.; Folkes L. K.; O'Neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin. Oncol., 2013, 25(10), 578-585. doi:10.1016/j.clon.2013.06.007http://dx.doi.org/10.1016/j.clon.2013.06.007
Fu Q. F.; Li H. Y.; Duan D. B.; Wang C. L.; Shen S. Y.; Ma H. M.; Liu Z. B. External-radiation-induced local hydroxylation enables remote release of functional molecules in tumors. Angew. Chem. Int. Ed., 2020, 59(48), 21546-21552. doi:10.1002/anie.202005612http://dx.doi.org/10.1002/anie.202005612
Xu Z. W.; Zhen W. Y.; McCleary C.; Luo T. K.; Jiang X. M.; Peng C.; Weichselbaum R. R.; Lin W. B. Nanoscale metal-organic framework with an X-ray triggerable prodrug for synergistic radiotherapy and chemotherapy. J. Am. Chem. Soc., 2023, 145(34), 18698-18704. doi:10.1021/jacs.3c04602http://dx.doi.org/10.1021/jacs.3c04602
Geng J.; Zhang Y. C.; Gao Q.; Neumann K.; Dong H.; Porter H.; Potter M.; Ren H.; Argyle D.; Bradley M. Switching on prodrugs using radiotherapy. Nat. Chem., 2021, 13(8), 805-810. doi:10.1038/s41557-021-00711-4http://dx.doi.org/10.1038/s41557-021-00711-4
Li, K.; Crews, C. M. PROTACs: Past, present and future. Chem. Soc. Rev., 2022, 51(12), 5214-5236. doi:10.1039/d2cs00193dhttp://dx.doi.org/10.1039/d2cs00193d
Yang C. R.; Yang Y. C.; Li Y. J.; Ni Q. K.; Li J. H. Radiotherapy-triggered proteolysis targeting chimera prodrug activation in tumors. J. Am. Chem. Soc., 2023, 145(1), 385-391. doi:10.1021/jacs.2c10177http://dx.doi.org/10.1021/jacs.2c10177
Brown J. M.; Wilson W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer, 2004, 4, 437-447. doi:10.1038/nrc1367http://dx.doi.org/10.1038/nrc1367
Turi L.; Rossky P. J. Theoretical studies of spectroscopy and dynamics of hydrated electrons. Chem. Rev., 2012, 112(11), 5641-5674. doi:10.1021/cr300144zhttp://dx.doi.org/10.1021/cr300144z
Tanabe K.; Makimura Y.; Tachi Y.; Imagawa-Sato A.; Nishimoto S. I. Hypoxia-selective activation of 5-fluorodeoxyuridine prodrug possessing indolequinone structure: radiolytic reduction and cytotoxicity characteristics. Bioorg. Med. Chem. Lett., 2005, 15(9), 2321-2324. doi:10.1016/j.bmcl.2005.03.013http://dx.doi.org/10.1016/j.bmcl.2005.03.013
Ding Z. X.; Guo Z. B.; Zheng Y. D.; Wang Z. Y.; Fu Q. F.; Liu Z. B. Radiotherapy reduces N-oxides for prodrug activation in tumors. J. Am. Chem. Soc., 2022, 144(21), 9458-9464. doi:10.1021/jacs.2c02521http://dx.doi.org/10.1021/jacs.2c02521
Guo Z. B.; Hong H. Y.; Zheng Y. D.; Wang Z. Y.; Ding Z. X.; Fu Q. F.; Liu Z. B. Radiotherapy-induced cleavage of quaternary ammonium groups activates prodrugs in tumors. Angew. Chem. Int. Ed., 2022, 61(34), e202205014. doi:10.1002/anie.202205014http://dx.doi.org/10.1002/anie.202205014
0
Views
215
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution