浏览全部资源
扫码关注微信
郑州大学 橡塑模具国家工程研究中心 郑州 450002
Chun-guang Shao, E-mail: shaochg@zzu.edu.cn
Published:20 December 2024,
Published Online:11 September 2024,
Received:27 April 2024,
Accepted:2024-05-30
移动端阅览
魏聪, 施智勇, 张华珅, 徐剑, 王亚明, 刘春太, 申长雨, 邵春光. 可控增压条件下等规聚丙烯/β-成核剂的结晶行为研究. 高分子学报, 2024, 55(12), 1742-1753
Wei, C.; Shi, Z. Y.; Zhang, H. S.; Xu, J.; Wang, Y. M.; Liu, C. T.; Shen, C. Y.; Shao, C. G. Crystallization behavior of isotactic polypropylene/β-nucleating agent under controlled pressurization conditions. Acta Polymerica Sinica, 2024, 55(12), 1742-1753
魏聪, 施智勇, 张华珅, 徐剑, 王亚明, 刘春太, 申长雨, 邵春光. 可控增压条件下等规聚丙烯/β-成核剂的结晶行为研究. 高分子学报, 2024, 55(12), 1742-1753 DOI: 10.11777/j.issn1000-3304.2024.24126. CSTR: 32057.14.GFZXB.2024.7268.
Wei, C.; Shi, Z. Y.; Zhang, H. S.; Xu, J.; Wang, Y. M.; Liu, C. T.; Shen, C. Y.; Shao, C. G. Crystallization behavior of isotactic polypropylene/β-nucleating agent under controlled pressurization conditions. Acta Polymerica Sinica, 2024, 55(12), 1742-1753 DOI: 10.11777/j.issn1000-3304.2024.24126. CSTR: 32057.14.GFZXB.2024.7268.
利用广角X射线和偏光显微镜研究了等规聚丙烯/
β
-成核剂(
i
PP/TMB-5)在不同增压条件下的结晶行为. 结果表明:改变增压条件不仅能够控制TMB-5的自组装结构,改变
i
PP的结晶形貌,还能够制备出由不同晶相组成的
i
PP/TMB-5制品. 不同增压温度下,TMB-5能够自组装成针状、花状或点状结构,进而诱导
i
PP生成棒状、花状或点状晶;较低的增压压力下,TMB-5能够组装成尺寸较大、结构较完善的聚集体,压力越高越不利于TMB-5的自组装;增压压力较低时(100、200 MPa),升高增压速率能够抑制TMB-5的自组装,当增压压力为500 MPa及以上时,这种抑制作用不明显;在
i
PP/TMB-5高压结晶过程中存在
β
-
i
PP、
γ
-
i
PP的竞争生长现象,增压压力越低越有利于
β
-
i
PP的形成,反之有利于
γ
-
i
PP的生成,压力为500 MPa或更高时,
β
-
i
PP完全消失,制备出纯的
γ
-
i
PP/TMB-5样品.
β
-Nucleating agents can not only provide a large number of nucleation sites for
β
-
i
PP crystallization and accelerate its crystallization
but also regulate the crystal morphology of
i
PP
which in turn affects its macroscopic properties. In this study
the crystallization behavior of isotactic polypropylene/
β
-nucleating agent (
i
PP/TMB-5) under different pressurization conditions was investigated using wide-angle X-ray diffraction and polarized optical microscopy. The results show that changing the pressurization conditions can not only control the self-assembly structure of TMB-5 and change the crystalline morphology of
i
PP
but also prepare
i
PP/TMB-5 products with different crystalline phases. At different pressurization temperatures
TMB-5 can self-assemble into needle-like
flower-like or dot-like structures
which in turn induces
i
PP to pro
duce rod-like
flower-like or dot-like crystals; at lower pressurization pressures
TMB-5 can be assembled into larger-sized and better-structured aggregates
and the higher the pressure
the more detrimental to the self-assembly of TMB-5; at lower pressurization pressures (100
200 MPa)
the higher pressurization rates can inhibit the self-assembly of TMB-5
and at lower pressurization pressures (100
200 MPa)
the higher pressurization rates can inhibit the self-assembly of TMB-5. When the pressurization pressure is 500 MPa and above
this inhibitory effect is not obvious; in the process of
i
PP/TMB-5 high-pressure crystallization
there is a competitive growth phenomenon of
β
-
i
PP and
γ
-
i
PP
and the lower the pressurization pressure
the more favorable the formation of
β
-
i
PP
and vice versa for the generation of
γ
-
i
PP
and the higher the pressure is 500 MPa
the
β
-
i
PP completely disappears
and the
β
-
i
PP is prepared.
i
PP completely disappeared at a pressure of 500 MPa or higher
and pure
γ
-
i
PP/TMB-5 samples were prepared.
等规聚丙烯/β-成核剂高压结晶结晶形貌β-成核剂自组装
Isotactic polypropylene/β-nucleating agent (iPP/TMB-5)High pressure crystallizationCrystalline morphologyTMB-5 self-assembly
Lotz B.; Graff S.; Straupé C.; Wittmann J. C.Single crystals of γ phase isotactic polypropylene: combined diffraction and morphological support for a structure with non-parallel chains. Polymer, 1991, 32(16), 2902-2910. doi:10.1016/0032-3861(91)90185-lhttp://dx.doi.org/10.1016/0032-3861(91)90185-l
Meille S. V.; Ferro D. R.; Brueckner S.; Lovinger A. J.; Padden F. J.Structure of .beta.-isotactic polypropylene: a long-standing structural puzzle. Macromolecules, 1994, 27(9), 2615-2622. doi:10.1021/ma00087a034http://dx.doi.org/10.1021/ma00087a034
Somani R. H.; Hsiao B. S.; Nogales A.; Fruitwala H.; Srinivas S.; Tsou A. H.Structure development during shear flow induced crystallization of i-PP: in situ wide-angle X-ray diffraction study. Macromolecules, 2001, 34(17), 5902-5909. doi:10.1021/ma0106191http://dx.doi.org/10.1021/ma0106191
乔泽爽, 邹发生, 宋文波, 白红伟, 傅强. 基于结晶调控制备低收缩聚丙烯. 高分子学报, 2023, 54(8), 1186-1195. doi:10.11777/j.issn1000-3304.2022.22450http://dx.doi.org/10.11777/j.issn1000-3304.2022.22450
杜惠真, 杨飞, 张坤玉, 马哲, 王彬, 潘莉, 李悦生. 等规聚丙烯离聚体增容聚丙烯/尼龙11共混体系研究. 高分子学报, 2018, (12), 1539-1547. doi:10.11777/j.issn1000-3304.2018.18090http://dx.doi.org/10.11777/j.issn1000-3304.2018.18090
Rhoades A. M.; Wonderling N.; Gohn A.; Williams J.; Mileva D.; Gahleitner M.; Androsch R.Effect of cooling rate on crystal polymorphism in beta-nucleated isotactic polypropylene as revealed by a combined WAXS/FSC analysis. Polymer, 2016, 90, 67-75. doi:10.1016/j.polymer.2016.02.047http://dx.doi.org/10.1016/j.polymer.2016.02.047
Kersch M.; Schmidt H. W.; Altstädt V.Influence of different beta-nucleating agents on the morphology of isotactic polypropylene and their toughening effectiveness. Polymer, 2016, 98, 320-326. doi:10.1016/j.polymer.2016.06.051http://dx.doi.org/10.1016/j.polymer.2016.06.051
Huo H.; Jiang S. C.; An L. J.; Feng J. C.Influence of shear on crystallization behavior of the β phase in isotactic polypropylene with β-Nucleating agent. Macromolecules, 2004, 37(7), 2478-2483. doi:10.1021/ma0358531http://dx.doi.org/10.1021/ma0358531
Lotz B.α and β phases of isotactic polypropylene: a case of growth kinetics 'phase reentrency' in polymer crystallization. Polymer, 1998, 39(19), 4561-4567. doi:10.1016/s0032-3861(97)10147-1http://dx.doi.org/10.1016/s0032-3861(97)10147-1
Zou Q. Z.; Ruan Y. F.; Zhang R.; Liu G. X.Tunable slow dynamics of three-dimensional polymer melts through architecture engineering. Macromolecules, 2024, 57(2), 777-785. doi:10.1021/acs.macromol.3c02337http://dx.doi.org/10.1021/acs.macromol.3c02337
Balzano L.; Ma Z.; Cavallo D.; van Erp T. B.; Fernandez-Ballester L.; Peters G. W. M.Molecular aspects of the formation of shish-kebab in isotactic polypropylene. Macromolecules, 2016, 49(10), 3799-3809. doi:10.1021/acs.macromol.6b00428http://dx.doi.org/10.1021/acs.macromol.6b00428
Hu D. D.; Wang G.; Feng J. C.; Lu X. Y.Exploring supramolecular self-assembly of a bisamide nucleating agent in polypropylene melt: the roles of hydrogen bond and molecular conformation. Polymer, 2016, 93, 123-131. doi:10.1016/j.polymer.2016.04.033http://dx.doi.org/10.1016/j.polymer.2016.04.033
Varga J.; Menyhárd A.Effect of solubility and nucleating duality of N,N′-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules, 2007, 40(7), 2422-2431. doi:10.1021/ma062815jhttp://dx.doi.org/10.1021/ma062815j
Zhao S. C.; Cai Z.; Xin Z.A highly active novel β-nucleating agent for isotactic polypropylene. Polymer, 2008, 49(11), 2745-2754. doi:10.1016/j.polymer.2008.04.012http://dx.doi.org/10.1016/j.polymer.2008.04.012
Krache R.; Benavente R.; López-Majada J. M.; Pereña J. M.; Cerrada M. L.; Pérez E.Competition between α, β, and γ polymorphs in a β-nucleated metallocenic isotactic polypropylene. Macromolecules, 2007, 40(19), 6871-6878. doi:10.1021/ma0710636http://dx.doi.org/10.1021/ma0710636
Wu B.; Zheng X.; Xu W.; Ren Y.; Leng H.; Liang L.; Zheng, Chen J.; Jiang H.β-Nucleated polypropylene: preparation, nucleating efficiency, composite, and future prospects. Polymers, 2023, 15(14), 3107. doi:10.3390/polym15143107http://dx.doi.org/10.3390/polym15143107
Dong M.; Guo Z. X.; Yu J.; Su Z. Q.Study of the assembled morphology of aryl amide derivative and its influence on the nonisothermal crystallizations of isotactic polypropylene. J. Polym. Sci. Part B Polym. Phys., 2009, 47(3), 314-325. doi:10.1002/polb.21642http://dx.doi.org/10.1002/polb.21642
Dong M.; Jia M. Y.; Guo Z. X.; Yu J.Effect of final heating temperature on crystallization of isotactic polypropylene nucleated with an aryl amide derivative as β-form nucleating agent. Chinese J. Polym. Sci., 2011, 29(3), 308-317. doi:10.1007/s10118-011-1031-0http://dx.doi.org/10.1007/s10118-011-1031-0
Wu G. G.; Xu L. Y.; Chen W. B.; Ding C.; Liu Z. Y.; Yang W.; Yang M. B.Oriented polypropylene cast films consisted of β-transcrystals induced by the nucleating agent self-assembly and its homogeneous membranes with high porosity. Polymer, 2018, 151, 136-144. doi:10.1016/j.polymer.2018.07.066http://dx.doi.org/10.1016/j.polymer.2018.07.066
Ding C.; Wu G. G.; Zhang Y.; Chen W. B.; Yin B.; Yang M. B.Supramolecular self-assembly of compound β nucleating agent and effect on polypropylene microporous membrane. Polym. Cryst., 2019, 2(5), e10080. doi:10.1002/pcr2.10080http://dx.doi.org/10.1002/pcr2.10080
解世杰, 董穆, 王克智, 郭朝霞, 于建. 取代芳酰胺型β成核剂TMB5的形态演变规律及其对iPP的β晶诱导行为的影响. 高分子学报, 2016, (6), 734-741. doi:10.11777/j.issn1000-3304.2016.15305http://dx.doi.org/10.11777/j.issn1000-3304.2016.15305
Han R.; Li Y. J.; Wang Q.; Nie M.Critical formation conditions for β-form hybrid shish-kebab and its structural analysis. RSC Adv., 2014, 4(110), 65035-65043. doi:10.1039/c4ra12828ahttp://dx.doi.org/10.1039/c4ra12828a
Yue Y.; Yi J. J.; Wang L.; Feng J. C.Toward a more comprehensive understanding on the structure evolution and assembly formation of a bisamide nucleating agent in polypropylene melt. Macromolecules, 2020, 53(11), 4381-4394. doi:10.1021/acs.macromol.0c00019http://dx.doi.org/10.1021/acs.macromol.0c00019
Yue Y.; Wang X. X.; Feng J. C.Concentration effect of a bis-amide nucleating agent on the shear-induced crystallization behavior of isotactic polypropylene. ACS Appl. Polym. Mater., 2021, 3(2), 1145-1156. doi:10.1021/acsapm.0c01345http://dx.doi.org/10.1021/acsapm.0c01345
Luo F.; Geng C. Z.; Wang K.; Deng H.; Chen F.; Fu Q.; Na B.New understanding in tuning toughness of β-polypropylene: the role of β-nucleated crystalline morphology. Macromolecules, 2009, 42(23), 9325-9331. doi:10.1021/ma901651fhttp://dx.doi.org/10.1021/ma901651f
Yang S. G.; Chen Y. H.; Deng B. W.; Lei J.; Li L. B.; Li Z. M.Window of pressure and flow to produce β-crystals in isotactic polypropylene mixed with β-nucleating agent. Macromolecules, 2017, 50(12), 4807-4816. doi:10.1021/acs.macromol.7b00041http://dx.doi.org/10.1021/acs.macromol.7b00041
Yang S. G.; Zhang Z. C.; Zhou D.; Wang Y.; Lei J.; Li L. B.; Li Z. M.Flow and pressure jointly induced ultrahigh melting temperature spherulites with oriented thick lamellae in isotactic polypropylene. Macromolecules, 2015, 48(16), 5834-5844. doi:10.1021/acs.macromol.5b01043http://dx.doi.org/10.1021/acs.macromol.5b01043
van Drongelen M.; van Erp T. B.; Peters G. W. M.Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: the influence of cooling rate and pressure. Polymer, 2012, 53(21), 4758-4769. doi:10.1016/j.polymer.2012.08.003http://dx.doi.org/10.1016/j.polymer.2012.08.003
van Erp T. B.; Balzano L.; Spoelstra A. B.; Govaert L. E.; Peters G. W. M.Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: The influence of shear and pressure. Polymer, 2012, 53(25), 5896-5908. doi:10.1016/j.polymer.2012.10.027http://dx.doi.org/10.1016/j.polymer.2012.10.027
Campbell R. A.; Phillips P. J.; Lin J. S.The gamma phase of high-molecular-weight polypropylene: 1. Morphological aspects. Polymer, 1993, 34(23), 4809-4816. doi:10.1016/0032-3861(93)90002-rhttp://dx.doi.org/10.1016/0032-3861(93)90002-r
Jia W.; Zhuo R.; Xu M.; Lin J.; Li X.; Liu C.; Shen C.; Shao C.Synergistic effect of pressurization rate and β-form nucleating agent on the multi-phase crystallization of iPP. Polymers, 2021, 13(17), 2984. doi:10.3390/polym13172984http://dx.doi.org/10.3390/polym13172984
Fu X. B.; Jia W. X.; Li X. T.; Wang Y. M.; Wang Z.; Liu C. T.; Shen C. Y.; Shao C. G.Phase transitions of the rapid-compression-induced mesomorphic isotactic polypropylene under high-pressure annealing. J. Polym. Sci. Part B Polym. Phys., 2019, 57(11), 651-661. doi:10.1002/polb.24820http://dx.doi.org/10.1002/polb.24820
Huang J. J.; Fu X. B.; Shao C. G.; Ma Z.; Wang Y. M.; Liu C. T.; Shen C. Y.High-pressure induced formation of isotactic polypropylene mesophase: synergistic effect of pressure and pressurization rate. Polym. Eng. Sci., 2019, 59(3), 439-446. doi:10.1002/pen.24940http://dx.doi.org/10.1002/pen.24940
Luo B. J.; Li J. Q.; Zhang Q.; Li G. H.; Meng X. J.; Yang J.; Li H. F.; Song J.; Jiang S. C.Solvent-dependent morphology of TMB-5 nucleating agent and the effects on the inducing efficiency of β-iPP crystal. Colloid Polym. Sci., 2023, 301(12), 1487-1498. doi:10.1007/s00396-023-05164-4http://dx.doi.org/10.1007/s00396-023-05164-4
Liu L. Y.; Zhao Y.; Zhang C. B.; Dong Z. Y.; Wang K. Z.; Wang D. J.Morphological characteristics of β-nucleating agents governing the formation of the crystalline structure of isotactic polypropylene. Macromolecules, 2021, 54(14), 6824-6834. doi:10.1021/acs.macromol.1c01038http://dx.doi.org/10.1021/acs.macromol.1c01038
Mezghani K.; Phillips P. J.The γ-phase of high molecular weight isotactic polypropylene. II: The morphology of the γ-form crystallized at 200 MPa. Polymer, 1997, 38(23), 5725-5733. doi:10.1016/s0032-3861(97)00131-6http://dx.doi.org/10.1016/s0032-3861(97)00131-6
Yang G.; Li X. X.; Chen J. W.; Yang J. H.; Huang T.; Liu X. R.; Wang Y.Crystallization behavior of isotactic polypropylene induced by competition action of β nucleating agent and high pressure. Colloid Polym. Sci., 2012, 290(6), 531-540. doi:10.1007/s00396-011-2573-yhttp://dx.doi.org/10.1007/s00396-011-2573-y
0
Views
89
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution