浏览全部资源
扫码关注微信
1.北京服装学院材料设计与工程学院 服装材料研究开发与评价北京市重点实验室 北京市纺织纳米纤维工程技术研究中心 北京 100029
2.新加坡国立大学化学学院 新加坡 117543
3.渤化易采(天津)科技发展有限公司 天津 300450
Qun Zhang, E-mail: zhangqun@bift.edu.cnJiao-na Wang, E-mail: clywjn@bift.edu.cn
Jiao-na Wang, E-mail: clywjn@bift.edu.cn
Published:20 February 2025,
Published Online:02 December 2024,
Received:30 July 2024,
Accepted:2024-10-17
移动端阅览
XIN LI, JIE WANG, QUN ZHANG, JIAO-NA WANG, RUI WANG, XIU-QIN ZHANG, XIAO-GANG LIU. Preparation and Property Regulation of Crosslinked Polyurethane Solid-Solid Phase-Change Materials with Intelligent Thermoregulation at Suitable Temperature for the Human Body. [J]. Acta polymerica sinica, 2025, 56(2): 331-341.
XIN LI, JIE WANG, QUN ZHANG, JIAO-NA WANG, RUI WANG, XIU-QIN ZHANG, XIAO-GANG LIU. Preparation and Property Regulation of Crosslinked Polyurethane Solid-Solid Phase-Change Materials with Intelligent Thermoregulation at Suitable Temperature for the Human Body. [J]. Acta polymerica sinica, 2025, 56(2): 331-341. DOI: 10.11777/j.issn1000-3304.2024.24209. CSTR: 32057.14.GFZXB.2024.7303.
以聚乙二醇(PEG)为软段,六亚甲基二异氰酸酯为硬段,三聚氰胺为交联剂,制备出交联聚氨酯(CLPU),研究了不同PEG分子量对其相变性能的影响. 结果表明,CLPU的焓值和相变温度随PEG分子量的改变而发生规律性变化,其中以PEG2000为原料制备的聚氨酯固固相变材料(PU-SSPCM),相变温度(
T
m
=39.9 ℃,
T
c
=8.7 ℃)在人体舒适温度区间,焓值在56.6 J/g以上,100次热循环后其性能基本保持不变. 此外,还探讨了三聚氰胺含量对CLPU2000性能的影响,结果表明,随着三聚氰胺含量的增加,所得聚氨酯的焓值会降低,而相变温度则略有上升. 所得聚氨酯体系具有良好的相变调温功能,将其置于手心100 s后与体温仍有3.8 ℃的温差. 该材料体系在人体热管理领域具有广阔的应用前景,有望在智能调温服装、红外隐身等领域发挥重要作用.
Cross-linked polyurethane (CLPU) was prepared using poly(ethylene glycol) (PEG) as the soft segment
hexamethylene diisocyanate as the hard segment and melamine as the cross-linking agent
and the effects of
different PEG molecular weights on phase transition properties of CLPU were investigated. The results showed that the enthalpy and phase transition temperature of CLPU changed regularly with the change of molecular weight of PEG
among which the phase transition temperature of the PU-SSPCM prepared from PEG2000 was in the range of the human body's comfortable temperature (
T
m
=39.9 ℃
T
c
=8.7 ℃)
the enthalpy was above 56.6 J/g
and the performance was basically unchanged after 100 thermal cycles. The effect of melamine content on the properties of CLPU2000 was also investigated
and it was found that the higher the melamine content
the lower the enthalpy of the resulting polyurethane and the slightly higher the phase transition temperature. The resulting polyurethane system has a good phase change thermoregulation function
and there is still a temperature difference of 3.8 ℃ between it and the body temperature after placing it in the palm of the hand for 100 s. This material system has broad application prospects in human thermal management and can be used in smart temperature-regulating clothing
infrared stealth and other fields.
交联聚氨酯固固相变材料人体适宜温度智能调温
Cross-linked polyurethaneSolid-solid phase change materialsSuitable temperature for human bodyIntelligent temperature regulation
Liu L.; Zhang Y. A.; Zhang S. F.; Tang B. T.Advanced phase change materials from natural perspectives: structural design and functional applications. Adv. Sci., 2023, 10(22), e2207652. doi:10.1002/advs.202207652http://dx.doi.org/10.1002/advs.202207652
Kumar S. S.; Rao G. A. P.Recent progress on battery thermal management with composite phase change materials. Energy Storage, 2024, 6(4), e647. doi:10.1002/est2.647http://dx.doi.org/10.1002/est2.647
王杰, 王娇娜, 张群, 侯思彤, 王进韬, 李昕. 柔性聚乙二醇基相变储能材料的研究进展. 北京服装学院学报(自然科学版), 2023, 43(4), 1-10.
Wang K. W.; Yan T.; Meng L. C.; Pan W. G.A review on microencapsulated phase-change materials: preparation, photothermal conversion performance, energy storage, and application. Sol. RRL, 2023, 7(22), 2300447. doi:10.1002/solr.202300447http://dx.doi.org/10.1002/solr.202300447
张益弘, 陈羽阳, 涂龙龙, 左雪, 谭烨, 喻林萍, 李传常, 曾巨澜. 基于水凝胶的定形相变材料制备与性能研究. 高分子学报, 2024, 55(9), 1229-1240.
Bai S. J.; Zhang K. X.; Zhang Q.; Zhu Y. L.; Wang W. Q.; Zhang J.; Li X.; Zhang X. Q.; Wang R.Intrinsic flame retardancy and flexible solid-solid phase change materials with self-healing and recyclability. ACS Appl. Mater. Interfaces, 2023, 15(41), 48613-48622. doi:10.1021/acsami.3c09722http://dx.doi.org/10.1021/acsami.3c09722
Hsu P. C.; Song A. Y.; Catrysse P. B.; Liu C.; Peng Y. C.; Xie J.; Fan S. H.; Cui Y.Radiative human body cooling by nanoporous polyethylene textile. Science, 2016, 353(6303), 1019-1023. doi:10.1126/science.aaf5471http://dx.doi.org/10.1126/science.aaf5471
Li G.; Hu Y.; Chen J. H.; Liang L. R.; Liu Z. X.; Fu J.; Du C. Y.; Chen G. M.Thermoelectric and photoelectric dual modulated sensors for human Internet of things application in accurate fire recognition and warning. Adv. Funct. Mater., 2023, 33(41), 2303861. doi:10.1002/adfm.202303861http://dx.doi.org/10.1002/adfm.202303861
Yang A. K.; Cai L. L.; Zhang R. F.; Wang J. Y.; Hsu P. C.; Wang H. X.; Zhou G. M.; Xu J. W.; Cui Y.Thermal management in nanofiber-based face mask. Nano Lett., 2017, 17(6), 3506-3510. doi:10.1021/acs.nanolett.7b00579http://dx.doi.org/10.1021/acs.nanolett.7b00579
Li H. X.; Ding Z. F.; Zhou Q.; Chen J.; Liu Z. X.; Du C. Y.; Liang L. R.; Chen G. M.Harness high-temperature thermal energy via elastic thermoelectric aerogels. Nanomicro Lett., 2024, 16(1), 151. doi:10.1007/s40820-024-01370-zhttp://dx.doi.org/10.1007/s40820-024-01370-z
Hu Z. Y.; Zhang X. Y.; Sun Q.; Gu P. Z.; Liang X.; Yang X.; Liu M. X.; Huang J.; Wu G. M.; Zu G. Q.Biomimetic transparent layered tough aerogels for thermal superinsulation and triboelectric nanogenerator. Small, 2024, 20(24), 2307602. doi:10.1002/smll.202307602http://dx.doi.org/10.1002/smll.202307602
Mokhtari Yazdi M.; Sheikhzadeh M.Personal cooling garments: a review. J. Text. Inst., 2014, 105(12), 1231-1250. doi:10.1080/00405000.2014.895088http://dx.doi.org/10.1080/00405000.2014.895088
Hu J. L.; Meng H.; Li G. Q.; Ibekwe S. I.A review of stimuli-responsive polymers for smart textile applications. Smart Mater. Struct., 2012, 21(5), 053001. doi:10.1088/0964-1726/21/5/053001http://dx.doi.org/10.1088/0964-1726/21/5/053001
Chang J. M.; Lu H. Y.; Xiao Y. L.; Wu S.; Xiao Y.; Wang Y. C.A solid-solid phase change material with wide service temperature range based on polyethylene glycols with different molecular weights. J. Appl. Polym. Sci., 2024, 141(7), e54950. doi:10.1002/app.54950http://dx.doi.org/10.1002/app.54950
Wei Z. K.; Liao Y. S.; Liu T. R.; Yuan A. Q.; Wu X. D.; Jiang L.; Lei J. X.; Fu X. W.Design of sustainable self-healing phase change materials by dynamic semi-interpenetrating network structure. Adv. Funct. Mater., 2024, 34(7), 2312019. doi:10.1002/adfm.202312019http://dx.doi.org/10.1002/adfm.202312019
Bidiyasar R.; Kumar R.; Jakhar N.A critical review of polymer support-based shape-stabilized phase change materials for thermal energy storage applications. Energy Storage, 2024, 6(4), e639. doi:10.1002/est2.639http://dx.doi.org/10.1002/est2.639
Chen K.; Liu R. W.,; Zou, C.; Shao, Q. Y.; Lan, Y. J. ; Cai, X. Q.; Zhai, L. L. Linear polyurethane ionomers as solid-solid phase change materials for thermal energy storage. Sol. Energy Mater. Sol. Cells, 2014, 130, 466-473. doi:10.1016/j.solmat.2014.07.036http://dx.doi.org/10.1016/j.solmat.2014.07.036
Zhou Y. C.; Yang J.; Bai L.; Bao R. Y.; Yang M. B.; Yang W.Flexible phase change hydrogels for mid-/low-temperature infrared stealth. Chem. Eng. J., 2022, 446, 137463. doi:10.1016/j.cej.2022.137463http://dx.doi.org/10.1016/j.cej.2022.137463
Usman A.; Xiong F.; Aftab W.; Qin M. L.; Zou R. Q.Emerging solid-to-solid phase-change materials for thermal-energy harvesting, storage, and utilization. Adv. Mater., 2022, 34(41), 2202457. doi:10.1002/adma.202202457http://dx.doi.org/10.1002/adma.202202457
周妍. 聚氨酯基固-固相变储能材料的制备及性能研究. 中国科学技术大学博士学位论文, 2019.
Aftab W.; Mahmood A.; Guo W. H.; Yousaf M.; Tabassum H.; Huang X. Y.; Liang Z. B.; Cao A. Y.; Zou R. Q.Polyurethane-based flexible and conductive phase change composites for energy conversion and storage. Energy Storage Mater., 2019, 20, 401-409. doi:10.1016/j.ensm.2018.10.014http://dx.doi.org/10.1016/j.ensm.2018.10.014
Zhou Y.; Sheng D. K.; Liu X. D.; Lin C. H.; Ji F. C.; Dong L.; Xu S. B.; Yang Y. M.Synthesis and properties of crosslinking halloysite nanotubes/polyurethane-based solid-solid phase change materials. Sol. Energy Mater. Sol. Cells, 2018, 174, 84-93. doi:10.1016/j.solmat.2017.08.031http://dx.doi.org/10.1016/j.solmat.2017.08.031
Wu J. W.; Hu R.; Zeng S. N.; Xi W.; Huang S. Y.; Deng J. H.; Tao G. M.Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation. ACS Appl. Mater. Interfaces, 2020, 12(16), 19015-19022. doi:10.1021/acsami.0c02300http://dx.doi.org/10.1021/acsami.0c02300
Atinafu D. G.; Dong W. J.; Huang X. B.; Gao H. Y.; Wang J. J.; Yang M.; Wang G.One-pot synthesis of light-driven polymeric composite phase change materials based on N-doped porous carbon for enhanced latent heat storage capacity and thermal conductivity. Sol. Energy Mater. Sol. Cells, 2018, 179, 392-400. doi:10.1016/j.solmat.2018.01.035http://dx.doi.org/10.1016/j.solmat.2018.01.035
Rosu D.; Tudorachi N.; Rosu L.Investigations on the thermal stability of a MDI based polyurethane elastomer. J. Anal. Appl. Pyrolysis, 2010, 89(2), 152-158. doi:10.1016/j.jaap.2010.07.004http://dx.doi.org/10.1016/j.jaap.2010.07.004
Abreu-Rejón A. D.; Herrera-Kao W. A.; May-Pat A.; Ávila-Ortega A.; Rodríguez-Fuentes N.; Uribe-Calderón J. A.; Cervantes-Uc J. M.Influence of molecular weight and grafting density of PEG on the surface properties of polyurethanes and their effect on the viability and morphology of fibroblasts and osteoblasts. Polymers, 2022, 14(22), 4912. doi:10.3390/polym14224912http://dx.doi.org/10.3390/polym14224912
0
Views
165
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution