浏览全部资源
扫码关注微信
1.广东工业大学 材料与能源学院 广东省功能软凝聚态物质重点实验室 广州 510006
2.广东工业大学 生物医药学院 广州 510006
3.中山大学化学学院 广东省高性能树脂基复合材料重点实验室 聚合物复合材料及功能材料教育部重点实验室 广州 510275
Hong-ping Xiang, E-mail: xianghongping@gdut.edu.cn
Published:20 January 2025,
Published Online:02 December 2024,
Received:08 August 2024,
Accepted:2024-09-24
移动端阅览
祖兆基, 曹雨扬, 刘静雯, 林子谦, 张蓝月, 向洪平, 章明秋 . 可自修复、再加工、抗菌硅橡胶的制备及性能研究. 高分子学报, 2025, 56(1), 152-165
Zu, Z. J.; Cao, Y. Y.; Liu, J. W.; Lin, Z. Q.; Zhang, L. Y.; Xiang, H. P.; Zhang, M. Q .Self-healing, reprocessable, and antibacterial silicone rubber enabled by ionic crosslinking bonds. Acta Polymerica Sinica, 2025, 56(1), 152-165
祖兆基, 曹雨扬, 刘静雯, 林子谦, 张蓝月, 向洪平, 章明秋 . 可自修复、再加工、抗菌硅橡胶的制备及性能研究. 高分子学报, 2025, 56(1), 152-165 DOI: 10.11777/j.issn1000-3304.2024.24212. CSTR: 32057.14.GFZXB.2024.7298.
Zu, Z. J.; Cao, Y. Y.; Liu, J. W.; Lin, Z. Q.; Zhang, L. Y.; Xiang, H. P.; Zhang, M. Q .Self-healing, reprocessable, and antibacterial silicone rubber enabled by ionic crosslinking bonds. Acta Polymerica Sinica, 2025, 56(1), 152-165 DOI: 10.11777/j.issn1000-3304.2024.24212. CSTR: 32057.14.GFZXB.2024.7298.
以
γ
-二乙烯三胺丙基改性聚硅氧烷(PMAS)为基材、柠檬酸(CA)作为交联剂,制备了可自修复、再加工和抗菌的动态交联硅橡胶(PMAS-CA),并将其与碳纳米管(CNTs)复合而成硅橡胶复合材料,研究其力学性能、自修复等性能的调控机制. 结果表明:PMAS经CA交联后可形成离子交联键,所构建的交联网络随温度升高而逐步解离,降温后离子交联键可重新形成. 随CA用量的增加,硅橡胶的拉伸强度增大,断裂伸长率降低;当PMAS与CA之间的氨基与羧基的比值为1时,硅橡胶的力学能较好,拉伸强度为1.2 MPa,伸长率为150%. 所制备硅橡胶发生断裂破坏后,在80 ℃下修复 2 h后可恢复90%的力学性能. 所制备的硅橡胶对大肠杆菌和金黄色葡萄球菌具有良好抗菌效果,同时还具有良好的细胞相容性. 此外,PMAS-CA与CNTs复合后力学性能提高了2~3倍,所制备CNTs/PMAS-CA复合材料具有良好的自修复能力,在80 ℃下修复4 h,修复效率高于80%. 该简便工艺所制备的自修复、可再加工、抗菌动态交联硅橡胶及其复合材料有望用于柔性传感等领域.
In this study
γ
-diethylenetriaminepropyl-modified polysiloxane (PMAS) and citric acid (CA) are used as the matrix and crosslinking agent to prepare silicone rubber (PMAS-CA) with self-healing
reprocessable
and antibacterial properties. Furthermore
the silicone rubber is compounded with carbon nanotubes (CNTs) to form silicone rubber composites
and their mechanical properties and self-healing capabilities are investigated. The results indicates that PMAS crosslinked with CA can form ionic crossli
nking bonds
which progressively dissociate with increasing temperature and reassociate upon cooling. With increasing amounts of CA
the tensile strength of the silicone rubber is increased
while the elongation at break is decreased. The silicone rubber prepared from PMAS with an amine value of about 3 mmol/g and an amine-to-carboxyl ratio of 1 exhibits optimal comprehensive properties
with a tensile strength of 1.2 MPa and an elongation of 150%. After being damaged and subsequently repaired at 80 ℃ for 2 h
the silicone rubber can recover 90% of its mechanical performance. The prepared silicone rubber also reveals good antibacterial effects against
Escherichia coli
and
Staphylococcus aureus
and has good biocompatibility. Furthermore
the mechanical properties of the PMAS-CA composites are improved by 2 to 3 times after compounding with CNTs
and the CNTs/PMAS-CA composites exhibit excellent self-healing capabilities
with a repair efficiency of over 80% after 4 h at 80 ℃. Therefore
this dynamically crosslinked silicone rubber and composites prepared through the simple process
showing excellent self-healing
reprocessing
and antibacterial properties
have the potential applications in flexible sensors and other fields.
硅橡胶自修复离子键抗菌性能柔性电子器件
Silicone rubberSelf-healingIonic bondsAntibacterial activityFlexible electronic device
Wu Q.; Peng Y.; Xiong H.; Hou Y. J.; Cai M. J.; Wang Y.; Zhao L. J.; Wu J. R.A novel shear-stiffening supramolecular material derived from diboron structure. Sci. China Mater., 2023, 66(11), 4489-4498. doi:10.1007/s40843-023-2581-xhttp://dx.doi.org/10.1007/s40843-023-2581-x
Huang S. J.; Huang H.; Liu X. X.; Xiang H. P.Free-radical/cationic hybrid UV-curable silicone resin for age-resistant coatings. Ind. Eng. Chem. Res., 2024, 63(33), 14657-14667. doi:10.1021/acs.iecr.4c01943http://dx.doi.org/10.1021/acs.iecr.4c01943
Peng W.; Yin H.; Liu P. M.; Peng J. M.; Sun J.; Zhang X.; Gu Y. H.; Dong X. H.; Ma Z. Z.; Shen J.; Liu P. S.Covalently construction of poly(hexamethylene biguanide) as high-efficiency antibacterial coating for silicone rubber. Chem. Eng. J., 2021, 412, 128707. doi:10.1016/j.cej.2021.128707http://dx.doi.org/10.1016/j.cej.2021.128707
Menasce S.; Libanori R.; Coulter F. B.; Studart A. R.3D-printed architectured silicones with autonomic self-healing and creep-resistant behavior. Adv. Mater., 2024, 36(14), 2306494. doi:10.1002/adma.202306494http://dx.doi.org/10.1002/adma.202306494
Zhang M. Q.Self-healing polymeric materials: on a winding road to success. Chinese J. Polym. Sci., 2022, 40(11), 1315-1316. doi:10.1007/s10118-022-2870-6http://dx.doi.org/10.1007/s10118-022-2870-6
Zhang Z. P.; Rong M. Z.; Zhang M. Q.Self-healable functional polymers and polymer-based composites. Prog. Polym. Sci., 2023, 144, 101724. doi:10.1016/j.progpolymsci.2023.101724http://dx.doi.org/10.1016/j.progpolymsci.2023.101724
叶娟, 祖兆基, 林子谦, 向洪平, 章明秋. 本征型自修复聚硅氧烷材料: 从单重动态交联网络到多重动态交联网络. 高分子学报, 2023, 54(7), 1028-1054. doi:10.11777/j.issn1000-3304.2022.22362http://dx.doi.org/10.11777/j.issn1000-3304.2022.22362
叶娟, 林子谦, 李伟健, 向洪平, 容敏智, 章明秋. 自修复有机硅材料的制备策略. 化学进展, 2023, 35(1), 135-156. doi:10.7536/PC220543http://dx.doi.org/10.7536/PC220543
犹阳, 容敏智, 章明秋. 聚合物可逆互锁网络的设计、制备和应用初探. 高分子学报, 2023, 54(1), 14-36.
Huang H. Q.; Du W. T.; Deng H. Y.; Xiang H. P.Aging-resistant, high-strength, reprocessable, and recyclable silicones through dynamic thiol-maleimide chemistry. Ind. Eng. Chem. Res., 2024, 63(35), 15373-15382. doi:10.1021/acs.iecr.4c02432http://dx.doi.org/10.1021/acs.iecr.4c02432
Kang J.; Son D.; Wang G.J N.; Liu Y. X.; Lopez J.; Kim Y.; Oh J. Y.; Katsumata T.; Mun J.; Lee Y.; Jin L. H.; Tok J. B. H.; Bao Z. N.Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater., 2018, 30(13), 1706846. doi:10.1002/adma.201706846http://dx.doi.org/10.1002/adma.201706846
Liu M. J.; Liu P.; Lu G.; Xu Z. T.; Yao X.Multiphase-assembly of siloxane oligomers with improved mechanical strength and water-enhanced healing. Angew. Chem. Int. Ed., 2018, 57(35), 11242-11246. doi:10.1002/anie.201805206http://dx.doi.org/10.1002/anie.201805206
Du R. C.; Xu Z. C.; Zhu C.; Jiang Y. W.; Yan H. P.; Wu H. C.; Vardoulis O.; Cai Y. F.; Zhu X. Y.; Bao Z. N.; Zhang Q. H.; Jia X. D.A highly stretchable and self-healing supramolecular elastomer based on sliding crosslinks and hydrogen bonds. Adv. Funct. Mater., 2020, 30(7), 1907139. doi:10.1002/adfm.201907139http://dx.doi.org/10.1002/adfm.201907139
Dai W. T.; Xie Z. H.; Ke Y. B.; You Y.; Rong M. Z.; Zhang M. Q.Topological confinement in reversibly interlocked polymer networks. Chinese J. Polym. Sci., 2024, 42(2), 133-140. doi:10.1007/s10118-024-3070-3http://dx.doi.org/10.1007/s10118-024-3070-3
Li Z. X.; Wang J. K.; Hu R. F.; Lv C.; Zheng J. P.A highly ionic conductive, healable, and adhesive polysiloxane-supported ionogel. Macromol. Rapid Commun., 2019, 40(7), 1800776. doi:10.1002/marc.201800776http://dx.doi.org/10.1002/marc.201800776
Boumezgane O.; Suriano R.; Fedel M.; Tonelli C.; Deflorian F.; Turri S.Self-healing epoxy coatings with microencapsulated ionic PDMS oligomers for corrosion protection based on supramolecular acid-base interactions. Prog. Org. Coat., 2022, 162, 106558. doi:10.1016/j.porgcoat.2021.106558http://dx.doi.org/10.1016/j.porgcoat.2021.106558
Zang W. P.; Liu X. Y.; Li J. J.; Jiang Y. J.; Yu B.; Zou H.; Ning N. Y.; Tian M.; Zhang L. Q.Conductive, self-healing and recyclable electrodes for dielectric elastomer generator with high energy density. Chem. Eng. J., 2022, 429, 132258. doi:10.1016/j.cej.2021.132258http://dx.doi.org/10.1016/j.cej.2021.132258
Yuan Z. Y.; Cao Z. X.; Wu R.; Li H.; Xu Q. J.; Wu H. T.; Zheng J.; Wu J. R.Ultra-robust metallosupramolecular hydrogels with unprecedented self-recoverability using asymmetrically distributed carboxyl-Fe3+ coordination interactions. Chinese J. Polym. Sci., 2023, 41(2), 250-257. doi:10.1007/s10118-022-2818-xhttp://dx.doi.org/10.1007/s10118-022-2818-x
Sun J. M.; Zhao E. G.; Liang J.; Li H.; Zhao S. H.; Wang G.; Gu X. G.; Tang B. Z.Diradical-featured organic small-molecule photothermal material with high-spin state in dimers for ultra-broadband solar energy harvesting. Adv. Mater., 2022, 34(9), 2108048. doi:10.1002/adma.202108048http://dx.doi.org/10.1002/adma.202108048
Mei J. F.; Jia X. Y.; Lai J. C.; Sun Y.; Li C. H.; Wu J. H.; Cao Y.; You X. Z.; Bao Z. N.A highly stretchable and autonomous self-healing polymer based on combination of Pt···Pt and π-π interactions. Macromol. Rapid Commun., 2016, 37(20), 1667-1675. doi:10.1002/marc.201600428http://dx.doi.org/10.1002/marc.201600428
Yoshida D.; Park J.; Ikura R.; Yamashita N.; Yamaguchi H.; Takashima Y.Self-healable poly(dimethyl siloxane) elastomers based on host-guest complexation between methylated β-cyclodextrin and adamantane. Chem. Lett., 2023, 52(2), 93-96. doi:10.1246/cl.220458http://dx.doi.org/10.1246/cl.220458
Fu G. H.; Yuan L.; Liang G. Z.; Gu A. J.Heat-resistant polyurethane films with great electrostatic dissipation capacity and very high thermally reversible self-healing efficiency based on multi-furan and liquid multi-maleimide polymers. J. Mater. Chem. A, 2016, 4(11), 4232-4241. doi:10.1039/c6ta00953khttp://dx.doi.org/10.1039/c6ta00953k
Feng Z. B.; Guo J. F.; Cao X. H.; Feng G. F.; Chen Z. Q.; Zhang X. H.A thermo-reversible furfuryl poly(thioether)-b-polysiloxane-b-furfuryl poly(thioether) triblock copolymer as a promising material for high dielectric applications. Polym. Chem., 2022, 13(10), 1376-1386. doi:10.1039/D2PY00043Ahttp://dx.doi.org/10.1039/D2PY00043A
Wang Z. P.; Ruan W. H.; Rong M. Z.; Zhang M. Q.Injection molding of highly filled microcrystalline cellulose/polycaprolactone composites with the aid of reversible Diels-Alder reaction. J. Mater. Sci. Technol., 2024, 170, 246-254. doi:10.1016/j.jmst.2023.07.017http://dx.doi.org/10.1016/j.jmst.2023.07.017
Chen J.; Luo Z. Y.; An R.; Marklund P.; Björling M.; Shi Y. J.Novel intrinsic self-healing poly-silicone-urea with super-low ice adhesion strength. Small, 2022, 18(22), 2200532. doi:10.1002/smll.202200532http://dx.doi.org/10.1002/smll.202200532
Zhang T.; Su H. X.; Shi X. R.; Li C. P.Self-healing siloxane elastomers constructed by hierarchical covalent crosslinked networks and reversible dynamic bonds for flexible electronics. J. Mater. Sci., 2022, 57(22), 10444-10456. doi:10.1007/s10853-022-07293-7http://dx.doi.org/10.1007/s10853-022-07293-7
Ye J.; Tan S. J.; Deng H. Y.; Huang W. B.; Jin H.; Zhang L. Y.; Xiang H. P.; Zhang M. Q.Self-healing and reprocessing of reclaimed rubber prepared by re-crosslinking waste natural rubber powders. Green Chem., 2023, 25(16), 6327-6335. doi:10.1039/d3gc01652hhttp://dx.doi.org/10.1039/d3gc01652h
Lin Z. Q.; Deng H. Y.; Hou Y.; Liu X. X.; Xu R. J.; Xiang H. P.; Peng Z. Q.; Rong M. Z.; Zhang M. Q.Dual-crosslinking side chains with an asymmetric chain structure: a facile pathway to a robust, self-healable, and re-dissolvable polysiloxane elastomer for recyclable flexible devices. J. Mater. Chem. A, 2022, 10(20), 11019-11029. doi:10.1039/d2ta01535hhttp://dx.doi.org/10.1039/d2ta01535h
Deng H. Y.; Ye J.; Zu Z. J.; Lin Z. Q.; Huang H. Q.; Zhang L. Y.; Ye X. J.; Xiang H. P.Repairable, reprocessable and recyclable rigid silicone material enabled by dual dynamic covalent bonds crosslinking side-chain. Chem. Eng. J., 2023, 465, 143038. doi:10.1016/j.cej.2023.143038http://dx.doi.org/10.1016/j.cej.2023.143038
Lin Z. Q.; Jin H.; Deng H. Y.; Zu Z. J.; Huang H. Q.; Zhang L. Y.; Xiang H. P.Robust, self-healable, recyclable and thermally conductive silicone composite as intelligent thermal interface material. Compos. Struct., 2024, 332, 117932. doi:10.1016/j.compstruct.2024.117932http://dx.doi.org/10.1016/j.compstruct.2024.117932
Guo R. L.; Qi W. N.; Liu H. Y.; Li D. X.; Chen G. X.; Li Q. F.; Zhou Z.Dynamic borate ester bond-based 3D printing fluorescence polysiloxane with self-healing, antimicrobial, and shape memory. Chem. Eng. J., 2024, 485, 149850. doi:10.1016/j.cej.2024.149850http://dx.doi.org/10.1016/j.cej.2024.149850
Xie Z. H.; Huang Z. X.; Zhang Z. P.; Rong M. Z.; Zhang M. Q.Imparting pulley effect and self-healability to cathode binder of Li-S battery for improvement of the cycling stability. Chinese J. Polym. Sci., 2023, 41(1), 95-107. doi:10.1007/s10118-022-2820-3http://dx.doi.org/10.1007/s10118-022-2820-3
Zhang, M. Q. Dynamic bonds in polymers. J. Polym. Sci., 2024, 62, 785-786. doi:10.1002/pol.20240044http://dx.doi.org/10.1002/pol.20240044
Chen F.; Pang X. Y.; Zhang Z. P.; Rong M. Z.; Zhang M. Q.Thermally conductive, healable glass fiber cloth reinforced polymer composite based on β-hydroxyester bonds crosslinked epoxy with improved heat resistance. Chinese J. Polym. Sci., 2024, 42(5), 643-654. doi:10.1007/s10118-024-3076-xhttp://dx.doi.org/10.1007/s10118-024-3076-x
Wang Z.; Liu Y. T.; Zhang D. J.; Zhang K. M.; Gao C. H.; Wu Y. M.Tough, stretchable and self-healing C-MXenes/PDMS conductive composites as sensitive strain sensors. Compos. Sci. Technol., 2021, 216, 109042. doi:10.1016/j.compscitech.2021.109042http://dx.doi.org/10.1016/j.compscitech.2021.109042
Yamaguchi M.; Yoshida K.; Suzuki R.; Nakamura H.Root canal irrigation with citric acid solution. J. Endod., 1996, 22(1), 27-29. doi:10.1016/s0099-2399(96)80232-9http://dx.doi.org/10.1016/s0099-2399(96)80232-9
Mira N. P.; Marshall R.; Pinheiro M. J. F.; Dieckmann R.; Al Dahouk S.; Skroza N.; Rudnicka K.; Lund P. A.; de Biase D.On the potential role of naturally occurring carboxylic organic acids as anti-infective agents: opportunities and challenges. Int. J. Infect. Dis., 2024, 140, 119-123. doi:10.1016/j.ijid.2024.01.011http://dx.doi.org/10.1016/j.ijid.2024.01.011
Liu T. M.; Wu X. Z.; Qiu Y. R.Enhanced biocompatibility and antibacterial property of polyurethane materials modified with citric acid and chitosan. J. Biomater. Sci. Polym. Ed., 2016, 27(12), 1211-1231. doi:10.1080/09205063.2016.1181375http://dx.doi.org/10.1080/09205063.2016.1181375
Gao J. H.; Wan B. Q.; Zheng M. S.; Zha J. W.Citric acid-induced room temperature self-healing polysiloxane elastomers with tunable mechanical properties and untraditional AIE fluorescence. Polym. Chem., 2022, 13(37), 5412-5421. doi:10.1039/d2py00789dhttp://dx.doi.org/10.1039/d2py00789d
Köhler T.; Gutacker A.; Mejía E.Industrial synthesis of reactive silicones: reaction mechanisms and processes. Org. Chem. Front., 2020, 7(24), 4108-4120. doi:10.1039/d0qo01075hhttp://dx.doi.org/10.1039/d0qo01075h
Zhang H.; Wu Y. Z.; Yang J. X.; Wang D.; Yu P. Y.; Lai C. T.; Shi A. C.; Wang J. P.; Cui S. X.; Xiang J. F.; Zhao N.; Xu J.Superstretchable dynamic polymer networks. Adv. Mater., 2019, 31(44), 1904029. doi:10.1002/adma.201904029http://dx.doi.org/10.1002/adma.201904029
0
Views
132
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution