is extensively utilized in various applications due to its distinctive attributes
including excellent transparency and low viscosity. The overall properties of HTPB are predominantly influenced by the microstructures of the main chain
with HTPB possessing a high 1
4-content exhibiting superior mechanical characteristics
particularly at low temperatures. However
the synthesis of such HTPB is challenging due to the inferior regioselectivity of current anionic or radical polymerization methods
which predominantly yield products with a high 1
2-content. In this study
we introduce a neodymium-based coordination polymerization system for the preparation of HTPB featuring high 1
4-content. This catalytic system exhibits unique coordinative chain transfer polymerization (CCTP) features
enabling the synthesis of HTPB with controlled molecular weight
narrow polydispersity
and very high 1
4-content. Furthermore
the average functionality (
f
) of the hydroxyl groups in the synthesized HTPB can be readily adjusted by varying the molar ratio of the Bd
OAl
comonomer. The resulting
f
values can reach up to 3.3
which is significantly higher than those typically obtained from traditional HTPB synthesized
via
anionic or radical polymerization methods
which are usually below 2.0. In conclusion
the HTPB synthesized using the CCTP method presented in this study offers a complementary advantage over conventional HTPB
showcasing improved control over molecular architecture and functionality
which may have significant implications for the development of advanced materials in various industrial sectors.
关键词
Keywords
references
Chen K. ; Ren Q. B. ; Li J. J. ; Chen D. F. ; Li C. X. A highly stretchable and self-healing hydroxy-terminated polybutadiene elastomer . J. Saudi Chem. Soc. , 2020 , 24 ( 12 ), 1034 - 1041 . doi: 10.1016/j.jscs.2020.11.002 http://dx.doi.org/10.1016/j.jscs.2020.11.002
Wen Y. ; Teng N. ; Liu F. ; Zhang R. Y. ; Wang H. F. ; Chen J. ; Zhu J. ; Na H. N. High efficient synthesis of hydroxyl-terminated polybutadiene (HTPB) based polyurethane via microwave heating . J. Polym. Mater. , 2019 , 35 ( 3 ), 355 - 369 . doi: 10.32381/jpm.2018.35.03.9 http://dx.doi.org/10.32381/jpm.2018.35.03.9
DeLuca L. T. ; Galfetti L. ; Maggi F. ; Colombo G. ; Merotto L. ; Boiocchi M. ; Paravan C. ; Reina A. ; Tadini P. ; Fanton L. Characterization of HTPB-based solid fuel formulations: performance, mechanical properties, and pollution . Acta Astronaut. , 2013 , 92 ( 2 ), 150 - 162 . doi: 10.1016/j.actaastro.2012.05.002 http://dx.doi.org/10.1016/j.actaastro.2012.05.002
Dey A. ; Khan M. A. S. ; Athar J. ; Sikder A. K. ; Chattopadhyay S. Effect of microstructure on HTPB based polyurethane (HTPB-PU) . J. Mater. Sci. Eng. B , 2015 , 5 , 145 - 151 . doi: 10.17265/2161-6221/2015.3-4.005 http://dx.doi.org/10.17265/2161-6221/2015.3-4.005
Dey A. ; Sikder A. ; Athar J. Micro-structural effect on hydroxy terminated poly butadiene (HTPB) prepolymer and HTPB based composite propellant . J. Mol. Nanot. Nanom. , 2017 , 1 ( 1 ), 104 - 105 .
Shankar R. M. ; Roy T. K. ; Jana T. Terminal functionalized hydroxyl-terminated polybutadiene: an energetic binder for propellant . J. Appl. Polym. Sci. , 2009 , 114 ( 2 ), 732 - 741 . doi: 10.1002/app.30665 http://dx.doi.org/10.1002/app.30665
Quagliano Amado J. C. ; Ross P. G. ; Mattos Silva Murakami L. ; Narciso Dutra J. C. Properties of hydroxyl-terminal polybutadiene (HTPB) and its use as a liner and binder for composite propellants: a review of recent advances . Propellants Explos. Pyrotech. , 2022 , 47 ( 5 ), e 202100283 . doi: 10.1002/prep.202100283 http://dx.doi.org/10.1002/prep.202100283
Wang F. ; Zhang C. Y. ; Hu Y. M. ; Jia X. Y. ; Bai C. X. ; Zhang X. Q. Reversible coordinative chain transfer polymerization of isoprene and copolymerization with ε -caprolactone by neodymium-based catalyst . Polymer , 2012 , 53 ( 26 ), 6027 - 6032 . doi: 10.1016/j.polymer.2012.10.044 http://dx.doi.org/10.1016/j.polymer.2012.10.044
Wang F. ; Liu H. ; Zheng W. J. ; Guo J. ; Zhang C. Y. ; Zhao L. P. ; Zhang H. X. ; Hu Y. M. ; Bai C. X. ; Zhang X. Q. Fully-reversible and semi-reversible coordinative chain transfer polymerizations of 1 , 3 -butadiene with neodymium-based catalytic systems . Polymer, 2013, 54 ( 25 ), 6716 - 6724 . doi: 10.1016/j.polymer.2013.10.031 http://dx.doi.org/10.1016/j.polymer.2013.10.031
Li Q. R. ; Wang F. ; Dong J. ; Zhang H. Q. ; Zhang C. Y. ; Liu H. ; Zhang X. Q. Influence of external N-containing donors on the neodymium-based catalytic system for 1 , 3 -butadiene polymerization . J. Appl. Polym. Sci., 2022, 139 ( 34 ), e 52817 . doi: 10.1002/app.52817 http://dx.doi.org/10.1002/app.52817
Ding A. W. ; Fang L. ; Zhang C. Y. ; Liu H. ; Zhang X. Q. ; Liao J. H. Neodymium-mediated coordinative chain transfer polymerization of isoprene in the presence of external donors . Molecules , 2023 , 28 ( 21 ), 7364 . doi: 10.3390/molecules28217364 http://dx.doi.org/10.3390/molecules28217364
Tang M. Z. ; Zhang R. ; Li S. Q. ; Zeng J. ; Luo M. C. ; Xu Y. X. ; Huang G. S. Towards a supertough thermoplastic polyisoprene elastomer based on a biomimic strategy . Angew. Chem. Int. Ed , 2018 , 57 ( 48 ), 15836 - 15840 . doi: 10.1002/anie.201809339 http://dx.doi.org/10.1002/anie.201809339
Friebe L. ; Nuyken O. ; Obrecht W. Neodymium-based Ziegler/Natta catalysts and their application in diene polymerization . Adv. Polym. Sci. , 2006 , 204 , 1 - 154 .
Zhang P. G. ; Tan W. ; Zhang X. L. ; Chen J. ; Yuan J. M. ; Deng J. R. Chemical modification of hydroxyl-terminated polybutadiene and its application in composite propellants . Ind. Eng. Chem. Res. , 2021 , 60 ( 10 ), 3819 - 3829 . doi: 10.1021/acs.iecr.0c06172 http://dx.doi.org/10.1021/acs.iecr.0c06172
Zhang Q. ; Shu Y. J. ; Liu N. ; Lu X. M. ; Shu Y. ; Wang X. C. ; Mo H. C. ; Xu M. H. Hydroxyl terminated polybutadiene: chemical modification and application of these modifiers in propellants and explosives . Cent. Eur. J. Energ. Mater. , 2019 , 16 ( 2 ), 153 - 193 . doi: 10.22211/cejem/109806 http://dx.doi.org/10.22211/cejem/109806