浏览全部资源
扫码关注微信
北京化工大学 有机无机复合材料国家重点实验室 北京 100029
Jia-yao Chen, E-mail: jiayao.chen@buct.edu.cn
Peng-fei Cao, E-mail: caopf@buct.edu.cn
Received:25 October 2024,
Accepted:2024-12-11,
Published Online:18 February 2025,
Published:20 April 2025
移动端阅览
田佳, 鞠浩, 李光裕, 陈嘉瑶, 曹鹏飞. 基于化学平衡原理设计热固性聚氨酯弹性体的闭环回收. 高分子学报, 2025, 56(4), 527-538
Tian, J.; Ju, H.; Li, G. Y.; Chen, J. Y.; Cao, P. F. Closed-loop recycling of thermoset polyurethane elastomers via chemical equilibrium. Acta Polymerica Sinica, 2025, 56(4), 527-538
田佳, 鞠浩, 李光裕, 陈嘉瑶, 曹鹏飞. 基于化学平衡原理设计热固性聚氨酯弹性体的闭环回收. 高分子学报, 2025, 56(4), 527-538 DOI: 10.11777/j.issn1000-3304.2024.24261. CSTR: 32057.14.GFZXB.2024.7332.
Tian, J.; Ju, H.; Li, G. Y.; Chen, J. Y.; Cao, P. F. Closed-loop recycling of thermoset polyurethane elastomers via chemical equilibrium. Acta Polymerica Sinica, 2025, 56(4), 527-538 DOI: 10.11777/j.issn1000-3304.2024.24261. CSTR: 32057.14.GFZXB.2024.7332.
传统热固性聚氨酯材料因其高度交联结构而难以熔融和溶解,导致其废弃物难以进行有效回收. 为此,基于基本化学平衡原理及氨基甲酸酯的动态特性,本研究设计了一种热固性聚氨酯弹性体的闭环化学回收方法:通过调节体系中单官能度醇类小分子浓度,获得可逆化学反应的定向调控,即通过浓度调控的反应平衡原理,控制热固性聚氨酯(C-PU)与线型前驱体分子之间反应倾向,最终实现热固性聚氨酯弹性体的闭环化学回收. 实验结果表明,通过闭环回收后重新交联的聚氨酯(C-PU-2)仍保持良好的弹性体力学性能,同时采用了核磁共振与红外光谱等手段进一步证实了回收前后高分子材料化学组成和分子结构的一致性,验证了闭环化学回收策略的有效性. 此外,C-PU材料可通过简单的热压工艺实现物理回收,满足不同回收应用需求. 本工作为实现热固性聚氨酯材料在环境友好型循环经济中的再利用提供了新的科学思路和技术策略,在高效回收废旧聚氨酯和其他热固性高分子材料方面具有一定的应用潜力.
Traditional polyurethane thermosets with highly cross-linked structure are unable to flow and be reprocessed
raising recycling challenges and environmental concerns. Here
a closed-loop chemical recycling approach was proposed for thermoset polyurethane elastomers. Based on the fundamental principles of chemical equilibrium and reversibility of urethane-bond formation
we designed a reversible exchange pathway between linear precursor and cross-linked polyurethane (C-PU) by controlling the concentration of side product
i.e.
n
-butanol
which can facilitate the transformation between the crosslinked network and linear counterpart. The recycled elastomer retained good elastomeric properties and showed comparable mechanical performance as its pristine sample. The Fourier transform infrared spectroscopy and nuclear magnetic resonance analysis confirmed the structural consistency of elastomers before and after chemical recycling
validating the effectiveness of the closed-loop recycling strategy. In addition to chemical recycling
the C-PU can also be reprocessed by direct thermal treatment of fractured or damaged material
which meets the requirements for various applications. This study opens a new avenue for closed-loop cycling of polyurethane thermosets and sustainable utilization of other thermosetting polymer materials.
Yuan Y. C. ; Sun Y. X. ; Yan S. J. ; Zhao J. Q. ; Liu S. M. ; Zhang M. Q. ; Zheng X. X. ; Jia L. Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites . Nat. Commun. , 2017 , 8 , 14657 . doi: 10.1038/ncomms14657 http://dx.doi.org/10.1038/ncomms14657
Jin F. L. ; Lee S. Y. ; Park S. J. Polymer matrices for carbon fiber-reinforced polymer composites . Carbon Lett. , 2013 , 14 ( 2 ), 76 - 88 . doi: 10.5714/cl.2013.14.2.076 http://dx.doi.org/10.5714/cl.2013.14.2.076
Tenorio-Alfonso A. ; Sánchez M. C. ; Franco J. M. A review of the sustainable approaches in the production of bio-based polyurethanes and their applications in the adhesive field . J. Polym. Environ. , 2020 , 28 ( 3 ), 749 - 774 . doi: 10.1007/s10924-020-01659-1 http://dx.doi.org/10.1007/s10924-020-01659-1
Gama N. V. ; Ferreira A. ; Barros-Timmons A. Polyurethane foams: past, present, and future . Materials , 2018 , 11 ( 10 ), 1841 . doi: 10.3390/ma11101841 http://dx.doi.org/10.3390/ma11101841
Zhao X. ; Demchuk Z. ; Tian J. ; Luo J. C. ; Li B. R. ; Cao K. ; Sokolov A. P. ; Hun D. A. ; Saito T. ; Cao P. F. Ductile adhesive elastomers with force-triggered ultra-high adhesion strength . Mater. Horiz. , 2024 , 11 ( 4 ), 969 - 977 . doi: 10.1039/d3mh01280h http://dx.doi.org/10.1039/d3mh01280h
Liu Y. L. ; Yu Z. ; Wang B. B. ; Li P. Y. ; Zhu J. ; Ma S. Q. Closed-loop chemical recycling of thermosetting polymers and their applications: a review . Green Chem. , 2022 , 24 ( 15 ), 5691 - 5708 . doi: 10.1039/d2gc00368f http://dx.doi.org/10.1039/d2gc00368f
Rani A. Types and sources of microplastics; the ubiquitous environment contaminant: a review . J. Polym. Mater. , 2022 , 39 ( 1-2 ), 17 - 35 . doi: 10.32381/jpm.2022.39.1-2.2 http://dx.doi.org/10.32381/jpm.2022.39.1-2.2
Zhang F. ; Wang F. ; Wei X. Y. ; Yang Y. ; Xu S. M. ; Deng D. H. ; Wang Y. Z. From trash to treasure: chemical recycling and upcycling of commodity plastic waste to fuels, high-valued chemicals and advanced materials . J. Energy Chem. , 2022 , 69 , 369 - 388 . doi: 10.1016/j.jechem.2021.12.052 http://dx.doi.org/10.1016/j.jechem.2021.12.052
Chen H. J. ; Bai Q. Y. ; Liu M. C. ; Wu G. ; Wang Y. Z. Ultrafast, cost-effective and scaled-up recycling of aramid products into aramid nanofibers: mechanism, upcycling, closed-loop recycling . Green Chem. , 2021 , 23 ( 19 ), 7646 - 7658 . doi: 10.1039/d1gc01805a http://dx.doi.org/10.1039/d1gc01805a
Abel B. A. ; Snyder R. L. ; Coates G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals . Science , 2021 , 373 ( 6556 ), 783 - 789 . doi: 10.1126/science.abh0626 http://dx.doi.org/10.1126/science.abh0626
Li X. L. ; Wu R. Z. ; Fu T. ; Li Z. M. ; Li Y. ; Wang X. L. ; Wang Y. Z. A multifunctional bio-based polyester material integrated with high mechanical performance, gas barrier performance, and chemically closed-loop . Adv. Funct. Mater. , 2024 , 34 ( 34 ), 2400911 . doi: 10.1002/adfm.202400911 http://dx.doi.org/10.1002/adfm.202400911
Yang S. Q. ; Du S. ; Zhu J. ; Ma S. Q. Closed-loop recyclable polymers: from monomer and polymer design to the polymerization—depolymerization cycle . Chem. Soc. Rev. , 2024 , 53 ( 19 ), 9609 - 9651 . doi: 10.1039/d4cs00663a http://dx.doi.org/10.1039/d4cs00663a
Ma K. ; An H. Y. ; Nam J. ; Reilly L. T. ; Zhang Y. L. ; Chen E. Y. X. ; Xu T. Q. Fully recyclable and tough thermoplastic elastomers from simple bio-sourced δ-valerolactones . Nat. Commun. , 2024 , 15 ( 1 ), 7904 . doi: 10.1038/s41467-024-52229-1 http://dx.doi.org/10.1038/s41467-024-52229-1
Wang Y. C. ; Li M. S. ; Chen J. L. ; Tao Y. H. ; Wang X. H. O-to-S substitution enables dovetailing conflicting cyclizability, polymerizability, and recyclability: dithiolactone vs . dilactone. Angew. Chem. Int. Ed. , 2021 , 60 ( 41 ), 22547 - 22553 . doi: 10.1002/anie.202109767 http://dx.doi.org/10.1002/anie.202109767
Palmer J. ; Ghita O. R. ; Savage L. ; Evans K. E. Successful closed-loop recycling of thermoset composites . Compos. Part A Appl. Sci. Manuf. , 2009 , 40 ( 4 ), 490 - 498 . doi: 10.1016/j.compositesa.2009.02.002 http://dx.doi.org/10.1016/j.compositesa.2009.02.002
Hao X. Y. ; Yu B. ; Li L. ; Ju H. ; Tian M. ; Cao P. F. Semi-interpenetrating polyurethane network with fatigue elimination and upcycled mechanical performance . Macromolecules , 2024 , 57 ( 10 ), 5063 - 5072 . doi: 10.1021/acs.macromol.4c00389 http://dx.doi.org/10.1021/acs.macromol.4c00389
Luo J. C. ; Zhao X. ; Ju H. ; Chen X. J. ; Zhao S. ; Demchuk Z. ; Li B. R. ; Bocharova V. ; Carrillo J. M Y.; Keum, J. K.; Xu, S.; Sokolov, A. P.; Chen, J. Y.; Cao, P. F. Highly recyclable and tough elastic vitrimers from a defined polydimethylsiloxane network . Angew. Chem. Int. Ed. , 2023 , 62 ( 47 ), e 202310989 . doi: 10.1002/anie.202310989 http://dx.doi.org/10.1002/anie.202310989
Kothavale S. ; Kim S. C. ; Cheong K. ; Zeng S. K. ; Wang Y. F. ; Lee J. Y. Solution-processed pure red TADF organic light-emitting diodes with high external quantum efficiency and saturated red emission color . Adv. Mater. , 2023 , 35 ( 13 ), 2208602 . doi: 10.1002/adma.202208602 http://dx.doi.org/10.1002/adma.202208602
Hu J. H. ; Pan Y. T. ; Zhou K. Q. ; Song P. G. ; Yang R. J. A new way to improve the fire safety of polyurethane composites with the assistance of metal–organic frameworks . RSC Appl. Polym. , 2024 , 2 ( 6 ), 996 - 1012 . doi: 10.1039/d4lp00257a http://dx.doi.org/10.1039/d4lp00257a
Chen Q. ; Zhao X. ; Li B. ; Sokolov A. P. ; Tian M. ; Advincula R. C. ; Cao P. Exceptionally recyclable, extremely tough, vitrimer-like polydimethylsiloxane elastomers via rational network design . Matter , 2023 , 6 ( 10 ), 3378 - 3393 . doi: 10.1016/j.matt.2023.05.020 http://dx.doi.org/10.1016/j.matt.2023.05.020
Schneiderman D. K. ; Vanderlaan M. E. ; Mannion A. M. ; Panthani T. R. ; Batiste D. C. ; Wang J. Z. ; Bates F. S. ; Macosko C. W. ; Hillmyer M. A. Chemically recyclable biobased polyurethanes . ACS Macro Lett. , 2016 , 5 ( 4 ), 515 - 518 . doi: 10.1021/acsmacrolett.6b00193 http://dx.doi.org/10.1021/acsmacrolett.6b00193
Guo Y. F. ; Yang L. ; Zhang L. Z. ; Chen S. ; Sun L. J. ; Gu S. J. ; You Z. W. A dynamically hybrid crosslinked elastomer for room-temperature recyclable flexible electronic devices . Adv. Funct. Mater. , 2021 , 31 ( 50 ), 2106281 . doi: 10.1002/adfm.202106281 http://dx.doi.org/10.1002/adfm.202106281
Morado E. G. ; Paterson M. L. ; Ivanoff D. G. ; Wang H. C. ; Johnson A. ; Daniels D. ; Rizvi A. ; Sottos N. R. ; Zimmerman S. C. End-of-life upcycling of polyurethanes using a room temperature, mechanism-based degradation . Nat. Chem. , 2023 , 15 ( 4 ), 569 - 577 . doi: 10.1038/s41557-023-01151-y http://dx.doi.org/10.1038/s41557-023-01151-y
Zhang Y. F. ; Ying H. Z. ; Hart K. R. ; Wu Y. X. ; Hsu A. J. ; Coppola A. M. ; Kim T. A. ; Yang K. ; Sottos N. R. ; White S. R. ; Cheng J. J. Malleable and recyclable poly(urea-urethane) thermosets bearing hindered urea bonds . Adv. Mater. , 2016 , 28 ( 35 ), 7646 - 7651 . doi: 10.1002/adma.201601242 http://dx.doi.org/10.1002/adma.201601242
Susa A. ; Vogelzang W. ; Teunissen W. ; Molenveld K. ; Maaskant E. ; Post W. A direct comparison of the thermal reprocessing potential of associative and dissociative reversible bonds in thermosets . RSC Appl. Polym. , 2024 , 2 ( 5 ), 945 - 956 . doi: 10.1039/d3lp00242j http://dx.doi.org/10.1039/d3lp00242j
Li B. R. ; Ge S. R. ; Zhao X. ; Chen Q. Y. ; Tian J. ; Hun D. A. ; Sokolov A. P. ; Saito T. ; Cao P. F. Well-tunable , 3 D-printable, and fast autonomous self-healing elastomers. Supramol. Mater., 2023, 2 , 100042 . doi: 10.1016/j.supmat.2023.100042 http://dx.doi.org/10.1016/j.supmat.2023.100042
Tien Y. I. ; Wei K. H. Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios . Polymer , 2001 , 42 ( 7 ), 3213 - 3221 . doi: 10.1016/s0032-3861(00)00729-1 http://dx.doi.org/10.1016/s0032-3861(00)00729-1
Bakkali-Hassani C. ; Berne D. ; Ladmiral V. ; Caillol S. Transcarbamoylation in polyurethanes: underestimated exchange reactions? Macromolecules , 2022 , 55 ( 18 ), 7974 - 7991 . doi: 10.1021/acs.macromol.2c01184 http://dx.doi.org/10.1021/acs.macromol.2c01184
Li B. R. ; Cao P. F. ; Saito T. ; Sokolov A. P. Intrinsically self-healing polymers: from mechanistic insight to current challenges . Chem. Rev. , 2023 , 123 ( 2 ), 701 - 735 . doi: 10.1021/acs.chemrev.2c00575 http://dx.doi.org/10.1021/acs.chemrev.2c00575
Huang L. ; Yang Y. Y. ; Yuan D. D. ; Cai X. F. Solid-solid phase-change materials with excellent mechanical property and solid state plasticity based on dynamic urethane bonds for Thermal Energy Storage . J. Energy Storage , 2021 , 36 , 102343 . doi: 10.1016/j.est.2021.102343 http://dx.doi.org/10.1016/j.est.2021.102343
Nettles J. A. ; Alfarhan S. ; Pascoe C. A. ; Westover C. ; Madsen M. D. ; Sintas J. I. ; Subbiah A. ; Long T. E. ; Jin K. L. Functional upcycling of polyurethane thermosets into value-added thermoplastics via small-molecule carbamate-assisted decross-linking extrusion . JACS Au , 2024 , 4 ( 8 ), 3058 - 3069 . doi: 10.1021/jacsau.4c00403 http://dx.doi.org/10.1021/jacsau.4c00403
Qin J. J. ; Liang L. Y. ; Liu X. H. ; Liu J. M. ; Wang D. S. ; Shi M. ; Yang C. L. Dynamic reversible mechanism of phenol-carbamate bonds and their potential for the development of thermo-healing, recyclable and high-performance epoxy thermosets . React. Funct. Polym. , 2024 , 195 , 105805 . doi: 10.1016/j.reactfunctpolym.2023.105805 http://dx.doi.org/10.1016/j.reactfunctpolym.2023.105805
Brutman J. ; Fortman D. J. ; De Hoe G. X. ; Dichtel W. R. ; Hillmyer M. A. Mechanistic study of stress relaxation in urethane-containing polymer networks . J. Phys. Chem. B , 2019 , 123 ( 6 ), 1432 - 1441 . doi: 10.1021/acs.jpcb.8b11489 http://dx.doi.org/10.1021/acs.jpcb.8b11489
0
Views
170
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution