浏览全部资源
扫码关注微信
1.化工资源有效利用国家重点实验室 北京化工大学 北京 100029
2.新元化学(山东)股份有限公司 威海 264200
Chang-wen Zhao, E-mail: zhaocw@buct.edu.cn
Wan-tai Yang, E-mail: yangwt@buct.edu.cn
Received:23 December 2024,
Accepted:2025-02-03,
Published Online:28 March 2025,
Published:20 May 2025
移动端阅览
周江山, 刘恺元, 邵军强, 赵长稳, 陈冬, 杨万泰. 烯马树脂无醛胶黏剂:新材料、新化学、高性能. 高分子学报, 2025, 56(5), 778-788
Zhou, J. S.; Liu, K. Y.; Shao, J. Q.; Zhao, C. W.; Chen, D.; Yang, W. T. Formaldehyde-free olefin-maleamic acid resin adhesives: new materials, new chemistry, high performance. Acta Polymerica Sinica, 2025, 56(5), 778-788
周江山, 刘恺元, 邵军强, 赵长稳, 陈冬, 杨万泰. 烯马树脂无醛胶黏剂:新材料、新化学、高性能. 高分子学报, 2025, 56(5), 778-788 DOI: 10.11777/j.issn1000-3304.2024.24306. CSTR: 32057.14.GFZXB.2025.7354.
Zhou, J. S.; Liu, K. Y.; Shao, J. Q.; Zhao, C. W.; Chen, D.; Yang, W. T. Formaldehyde-free olefin-maleamic acid resin adhesives: new materials, new chemistry, high performance. Acta Polymerica Sinica, 2025, 56(5), 778-788 DOI: 10.11777/j.issn1000-3304.2024.24306. CSTR: 32057.14.GFZXB.2025.7354.
基于缩聚反应合成的以脲醛树脂为代表的热固性甲醛系胶黏剂;由于甲醛残留及解聚反应的限制,用其黏合的人造板存在长期释放甲醛的问题. 开发无醛胶黏剂是从根本上解决人造板甲醛污染难题的有效方法. 本文提出了一种新的制备水溶性无醛胶黏剂的化学方法,首先以低成本的烯烃/混合烯烃和马来酸酐为原料,通过自稳定沉淀聚合(2SP)合成了烯烃/混合烯烃-马来酸酐共聚物微球. 进而利用该微球粒径均一、内部多孔、反应活性高的特点,直接与氨气通过气固反应制备了烯烃/混合烯烃-马来酰胺酸共聚物(简称“烯马树脂”). 烯马树脂可以在与脲醛树脂相同的热压条件下通过与其完全不同的胶合机理粘接木材:在高温条件下,烯马树脂的酰胺酸基团同时发生酰亚胺化反应和与木材羟基的酯化反应,实现其由水溶性向疏水性材料的转变,并同时通过交联木材赋予人造板良好的胶合性能. 以烯马树脂制备的纤维板、刨花板和胶合板综合性能均高于国标要求. 烯马树脂具有水溶性、无甲醛、苯及二甲苯添加、原料来源广泛且成本低、用胶工艺与脲醛树脂基本相同且胶合性能优异的特点,展现出替代传统脲醛树脂的巨大潜力.
The synthesis of urea-formaldehyde resin
a representative of thermosetting formaldehyde-based adhesives
is based on the polycondensation reaction. However
due to limitations in its raw materials and depolymerisation reactions
the bonding of wood based panels results in the long-term release of formaldehyde. The development of formaldehyde-free adhesives represents an effective solution to the formaldehyde pollution problem associated with wood based panels. This paper proposes a novel chemical method for the synthesis of water-soluble
formaldehyde-free adhesives. Firstly
the low-cost olefin/mixed olefin and maleic anhydride are employed as the raw materials
and olefin/mixed olefin-maleic anhydride copolymer microspheres are synthesised by self-stabilised precipitation polymerisation (2SP). Subsequently
the uniform particle size
internal porousness and high reactivity of the microspheres were exploited to prepare olefin/mixed olefin-maleic acid copolymers (referred to as OMA resin) directly by gas-solid reaction with ammonia. The OMA resin can bond wood through a completely different gluing mechanism when subjected to the same hot-pressing conditions as those used for urea-formaldehyde resins: under high-temperature conditions
the amide group of the OMA resin undergoes the process involving both imidisation and esterification with the hydroxyl group of the wood
resulting in a transformation from a water-soluble material to a hydrophobic material. Additionally
through cross-linking reaction with wood facilitates excellent gluing performance. The comprehensive performance of fibreboard
particleboard and plywood prepared with allyl resin exceeds the requirements of the national standard. The product is water-soluble
contains no formaldehyde
benzene or xylene
and can be derived from a wide range of raw materials and cost-effective. Furthermore
the gluing process is similar to that of urea-formaldehyde resin and the product exhibits excellent gluing performance. Therefore
OMA resin shows great potential to replace traditional urea-formaldehyde resin.
中国林产工业协会 , 国家林业和草原局产业发展规划设计院 . 中国人造板产业报告2023 . 北京 : 中国林产工业协会 , 2023 .
He Z. C. ; Xiong J. Y. ; Kumagai K. ; Chen W. H. An improved mechanism-based model for predicting the long-term formaldehyde emissions from composite wood products with exposed edges and seams . Environ. Int. , 2019 , 132 , 105086 . doi: 10.1016/j.envint.2019.105086 http://dx.doi.org/10.1016/j.envint.2019.105086
Zhang J. J. ; Song F. F. ; Tao J. ; Zhang Z. F. ; Shi S. Q. Research progress on formaldehyde emission of wood-based panel . Int. J. Polym. Sci. , 2018 , 2018 ( 1 ), 9349721 . doi: 10.1155/2018/9349721 http://dx.doi.org/10.1155/2018/9349721
Chen J. N. ; Zheng X. H. ; Song C. X. ; Qian H. Study on the effect of humidity on formaldehyde emission parameters of wood-based panels . Indoor Built Environ. , 2024 , 33 ( 6 ), 1087 - 1099 . doi: 10.1177/1420326x241232583 http://dx.doi.org/10.1177/1420326x241232583
Liu R. ; Liu M. ; Qu Y. C. ; Huang A. M. ; Ma E. N. Dynamic moisture sorption and formaldehyde emission behavior of three kinds of wood-based panels . Eur. J. Wood Wood Prod. , 2018 , 76 ( 3 ), 1037 - 1044 . doi: 10.1007/s00107-017-1255-y http://dx.doi.org/10.1007/s00107-017-1255-y
曾贤刚 , 李康玮 , 王琦 . 室内装修甲醛污染健康效应及经济影响评价 . 中国环境科学 , 2023 , 43 ( 8 ), 4370 - 4381 . doi: 10.3969/j.issn.1000-6923.2023.08.054 http://dx.doi.org/10.3969/j.issn.1000-6923.2023.08.054
Nakano K. ; Ando K. ; Takigawa M. ; Hattori N. Life cycle assessment of wood-based boards produced in Japan and impact of formaldehyde emissions during the use stage . Int. J. Life Cycle Assess. , 2018 , 23 ( 4 ), 957 - 969 . doi: 10.1007/s11367-017-1343-6 http://dx.doi.org/10.1007/s11367-017-1343-6
Kang D. S. ; Kim H. S. ; Jung J. H. ; Lee C. M. ; Ahn Y. S. ; Seo Y. R. Formaldehyde exposure and leukemia risk: a comprehensive review and network-based toxicogenomic approach . Genes Environ. , 2021 , 43 ( 1 ), 13 . doi: 10.1186/s41021-021-00183-5 http://dx.doi.org/10.1186/s41021-021-00183-5
Na C. J. ; Yoo M. J. ; Tsang D. C. W. ; Kim H. W. ; Kim K. H. High-performance materials for effective sorptive removal of formaldehyde in air . J. Hazard. Mater. , 2019 , 366 , 452 - 465 . doi: 10.1016/j.jhazmat.2018.12.011 http://dx.doi.org/10.1016/j.jhazmat.2018.12.011
Kristak L. ; Antov P. ; Bekhta P. ; Lubis M. A. R. ; Iswanto A. H. ; Reh R. ; Sedliacik J. ; Savov V. ; Taghiyari H. R. ; Papadopoulos A. N. ; Pizzi A. ; Hejna A. Recent progress in ultra-low formaldehyde emitting adhesive systems and formaldehyde scavengers in wood-based panels: A review . Wood Mater. Sci. Eng. , 2023 , 18 ( 2 ), 763 - 782 . doi: 10.1080/17480272.2022.2056080 http://dx.doi.org/10.1080/17480272.2022.2056080
Salthammer T. ; Mentese S. ; Marutzky R. Formaldehyde in the indoor environment . Chem. Rev. , 2010 , 110 ( 4 ), 2536 - 2572 . doi: 10.1021/cr800399g http://dx.doi.org/10.1021/cr800399g
Klepeis N. E. ; Nelson W. C. ; Ott W. R. ; Robinson J. P. ; Tsang A. M. ; Switzer P. ; Behar J. V. ; Hern S. C. ; Engelmann W. H. The national human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants . J. Expo. Anal. Environ. Epidemiol. , 2001 , 11 ( 3 ), 231 - 252 . doi: 10.1038/sj.jea.7500165 http://dx.doi.org/10.1038/sj.jea.7500165
Gao F. ; Yue X. H. ; Yang H. Q. ; Yang Y. F. ; Lam S. S. ; Peng W. X. ; Chen X. M. Health damage and repair mechanism related to formaldehyde released from wood-based panels . BioResources , 2023 , 18 ( 1 ): 1 - 14 . doi: 10.15376/biores.18.1.gao http://dx.doi.org/10.15376/biores.18.1.gao
Jang Y. ; Huang J. ; Li K. C. A new formaldehyde-free wood adhesive from renewable materials . Int. J. Adhes. Adhes. , 2011 , 31 ( 7 ), 754 - 759 . doi: 10.1016/j.ijadhadh.2011.07.003 http://dx.doi.org/10.1016/j.ijadhadh.2011.07.003
Gonçalves D. ; Bordado J. M. ; Marques A. C. ; Galhano Dos Santos R. Non-formaldehyde, bio-based adhesives for use in wood-based panel manufacturing industry-a review . Polymers , 2021 , 13 ( 23 ), 4086 . doi: 10.3390/polym13234086 http://dx.doi.org/10.3390/polym13234086
Shi L. D. ; Hu C. S. ; Zhang W. W. ; Chen R. J. ; Ye Y. S. ; Fan Z. W. ; Lin X. Y. Effects of adhesive residues in wood particles on the properties of particleboard . Ind. Crops Prod. , 2024 , 214 , 118526 . doi: 10.1016/j.indcrop.2024.118526 http://dx.doi.org/10.1016/j.indcrop.2024.118526
Shan J. Y. ; Qin A. H. ; Lin Q. Q. ; Cao L. J. ; Liu G. Y. ; Liu S. Q. ; Chen P. R. ; Tan H. Y. ; Zhang Y. H. ; Yu W. J. Citric acid/sucrose-modified pMDI for constructing high-performance straw particleboard based on multiple cross-linked networks . Ind. Crops Prod. , 2024 , 222 , 119842 . doi: 10.1016/j.indcrop.2024.119842 http://dx.doi.org/10.1016/j.indcrop.2024.119842
Pang H. W. ; Ma C. ; Shen Y. L. ; Sun Y. ; Li J. Z. ; Zhang S. F. ; Cai L. P. ; Huang Z. H. Novel bionic soy protein-based adhesive with excellent prepressing adhesion, flame retardancy, and mildew resistance . ACS Appl. Mater. Interfaces , 2021 , 13 ( 32 ), 38732 - 38744 . doi: 10.1021/acsami.1c11004 http://dx.doi.org/10.1021/acsami.1c11004
Hernandez J. A. ; Soni B. ; Iglesias M. C. ; Vega Erramuspe I. B. ; Frazier C. E. ; Peresin M. S. Soybean hull pectin and nanocellulose: tack properties in aqueous pMDI dispersions . J. Mater. Sci. , 2022 , 57 ( 8 ), 5022 - 5035 . doi: 10.1007/s10853-022-06938-x http://dx.doi.org/10.1007/s10853-022-06938-x
Oktay S. ; Pizzi A. ; Köken N. ; Bengü B. Chemical modification techniques of corn starch for synthesis wood adhesive . Int. J. Adhes. Adhes. , 2024 , 128 , 103545 . doi: 10.1016/j.ijadhadh.2023.103545 http://dx.doi.org/10.1016/j.ijadhadh.2023.103545
Neitzel N. ; Hosseinpourpia R. ; Adamopoulos S. A dialdehyde starch-based adhesive for medium-density fiberboards . BioResources , 2023 , 18 ( 1 ), 2155 - 2171 . doi: 10.15376/biores.18.1.2155-2171 http://dx.doi.org/10.15376/biores.18.1.2155-2171
Zhu Y. ; Zhang F. D. ; Bian R. H. ; Zeng G. D. ; Li J. J. ; Lyu Y. ; Li J. Z. Formaldehyde-free biomass adhesive based on industrial alkali lignin with high strength and toughness . Ind. Crops Prod. , 2024 , 222 , 119525 . doi: 10.1016/j.indcrop.2024.119525 http://dx.doi.org/10.1016/j.indcrop.2024.119525
Solt P. ; Konnerth J. ; Gindl-Altmutter W. ; Kantner W. ; Moser J. ; Mitter R. ; van Herwijnen H. W. G. Technological performance of formaldehyde-free adhesive alternatives for particleboard industry . Int. J. Adhes. Adhes. , 2019 , 94 , 99 - 131 . doi: 10.1016/j.ijadhadh.2019.04.007 http://dx.doi.org/10.1016/j.ijadhadh.2019.04.007
陈冬 , 马育红 , 赵长稳 , 王力 , 张先宏 , 杨万泰 . 自稳定沉淀聚合原理、方法及应用 . 中国科学 : 化学 , 2020 , 50 ( 7 ), 732 - 742 .
Liu Z. J. ; Chen D. ; Zhang J. F. ; Liao H. D. ; Chen Y. Z. ; Sun Y. F. ; Deng J. Y. ; Yang W. T. Self-stabilized precipitation polymerization and its application . Research , 2018 , 2018 , 9370490 . doi: 10.1155/2018/9370490 http://dx.doi.org/10.1155/2018/9370490
Xu C. ; Chen C. X. ; Jiang J. ; Zhao C. W. ; Ma Y. H. ; Yang W. T. Monodisperse styrene-maleic anhydride-isoprene terpolymer microspheres with tunable crosslinking density prepared by self-stabilized precipitation polymerization . ACS Appl. Polym. Mater. , 2022 , 4 ( 10 ), 7363 - 7372 . doi: 10.1021/acsapm.2c01156 http://dx.doi.org/10.1021/acsapm.2c01156
Shu H. Y. ; Song C. T. ; Yang L. ; Wang C. ; Chen D. ; Zhang X. H. ; Ma Y. H. ; Yang W. T. Self-stabilized precipitation polymerization of vinyl chloride and maleic anhydride . Ind. Eng. Chem. Res. , 2023 , 62 ( 8 ), 3612 - 3621 . doi: 10.1021/acs.iecr.2c03905 http://dx.doi.org/10.1021/acs.iecr.2c03905
Zhang C. ; Chen D. ; Yang W. T. Preparation of styrene-maleic anhydride-acrylamide terpolymer particles of uniform size and controlled composition via self-stabilized precipitation polymerization . Ind. Eng. Chem. Res. , 2020 , 59 ( 33 ), 15087 - 15097 . doi: 10.1021/acs.iecr.0c02246 http://dx.doi.org/10.1021/acs.iecr.0c02246
Chen C. X. ; Fei C. Z. ; Xu C. ; Ma Y. H. ; Zhao C. W. ; Yang W. T. Preparation of core-shell nanoparticles via emulsion polymerization induced self-assembly using a maleamic acid- α -methyl styrene copolymer as a macro-initisurf . Polym. Chem. , 2022 , 13 ( 42 ), 6022 - 6031 . doi: 10.1039/d2py01042a http://dx.doi.org/10.1039/d2py01042a
Chen C. X. ; Xu C. ; Zhai J. X. ; Ma Y. H. ; Zhao C. W. ; Yang W. T. Solvent-free preparation of uniform styrene/maleimide copolymer microspheres from solid poly(styrene- alt -maleic anhydride) microspheres . Polym. Chem. , 2022 , 13 ( 5 ), 684 - 692 . doi: 10.1039/d1py01540k http://dx.doi.org/10.1039/d1py01540k
Gonçalves C. ; Paiva N. T. ; Ferra J. M. ; Martins J. ; Magalhães F. ; Barros-Timmons A. ; Carvalho L. Utilization and characterization of amino resins for the production of wood-based panels with emphasis on particleboards (PB) and medium density fibreboards (MDF) . Holzforschung , 2018 , 72 ( 8 ), 653 - 671 . doi: 10.1515/hf-2017-0182 http://dx.doi.org/10.1515/hf-2017-0182
李建章 , 周文瑞 , 赵俊杰 , 于志明 , 张德荣 , 金小娟 , 陈欣 , 赵楠 . 木材工业用酚醛树脂胶粘剂的快速固化研究 . 中国胶粘剂 , 2003 , 12 ( 6 ), 61 - 63 . doi: 10.3969/j.issn.1004-2849.2003.06.017 http://dx.doi.org/10.3969/j.issn.1004-2849.2003.06.017
Chrobak J. ; Iłowska J. ; Chrobok A. Formaldehyde-free resins for the wood-based panel industry: alternatives to formaldehyde and novel hardeners . Molecules , 2022 , 27 ( 15 ), 4862 . doi: 10.3390/molecules27154862 http://dx.doi.org/10.3390/molecules27154862
Wolske K. A. Cyclic anhydride-amine reaction kinetics: small molecule and polymer bound . Doctoral Dissertation of University of Minnesota , 1996 .
Chen C. X. ; Xu C. ; Zhai J. X. ; Zhao C. W. ; Ma Y. H. ; Yang W. T. Low-cost and formaldehyde-free wood adhesive based on water-soluble olefin-maleamic acid copolymers . Ind. Eng. Chem. Res. , 2023 , 62 ( 48 ), 20547 - 20555 . doi: 10.1021/acs.iecr.3c01968 http://dx.doi.org/10.1021/acs.iecr.3c01968
Mao Z. P. ; Yang C. Q. Polymeric multifunctional carboxylic acids as crosslinking agents for cotton cellulose: poly(itaconic acid) and in situ polymerization of itaconic acid . J. Appl. Polym. Sci. , 2001 , 79 ( 2 ), 319 - 326 . doi: 10.1002/1097-4628(20010110)79:2<319::aid-app140>3.0.co;2-v http://dx.doi.org/10.1002/1097-4628(20010110)79:2<319::aid-app140>3.0.co;2-v
Samyn P. ; Deconinck M. ; Schoukens G. ; Stanssens D. ; Vonck L. ; van den Abbeele H. Modifications of paper and paperboard surfaces with a nanostructured polymer coating . Prog. Org. Coat. , 2010 , 69 ( 4 ), 442 - 454 . doi: 10.1016/j.porgcoat.2010.08.008 http://dx.doi.org/10.1016/j.porgcoat.2010.08.008
Duan H. Y. ; Qiu T. ; Guo L. H. ; Ye J. ; Yuan Y. ; Li X. Y. The aminolysis of styrene-maleic anhydride copolymers for a new modifier used in urea-formaldehyde resins . Int. J. Adhes. Adhes. , 2016 , 66 , 138 - 146 . doi: 10.1016/j.ijadhadh.2016.01.003 http://dx.doi.org/10.1016/j.ijadhadh.2016.01.003
0
Views
48
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution