浏览全部资源
扫码关注微信
1.北京分子科学国家研究中心 高分子化学与物理教育部重点实验室 北京大学化学与分子工程学院 北京 100871
2.山西浙大新材料与化工研究院 太原 030032
3.金属材料强度国家重点实验室 陕西省软物质国际联合研究中心 西安交通大学材料科学与工程学院 西安 710049
Received:12 February 2025,
Accepted:2025-03-31,
Published Online:07 May 2025,
移动端阅览
王兆旭, 陈艺夫, 李婧, 陶艺, 刘应泽, 叶曦翀, 宛新华. 聚合物添加剂调控手性化合物结晶拆分的研究进展. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25034
Wang, Z. X.; Chen, Y. F.; Li, J.; Tao, Y.; Liu, Y. Z.; Ye, X. C.; Wan, X. H. Progress in the crystallization resolution of chiral compounds aided by polymeric additives. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25034
王兆旭, 陈艺夫, 李婧, 陶艺, 刘应泽, 叶曦翀, 宛新华. 聚合物添加剂调控手性化合物结晶拆分的研究进展. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25034 DOI: CSTR: 32057.14.GFZXB.2025.7390.
Wang, Z. X.; Chen, Y. F.; Li, J.; Tao, Y.; Liu, Y. Z.; Ye, X. C.; Wan, X. H. Progress in the crystallization resolution of chiral compounds aided by polymeric additives. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25034 DOI: CSTR: 32057.14.GFZXB.2025.7390.
由于操作简便、成本低,结晶拆分目前仍然是工业上获得单一构型手性药物或其中间体的重要手段. 基于“量身定制”添加剂的逆向结晶方法适用底物范围大,拆分效率高,应用前景广阔. 本文重点介绍了逆向结晶过程中均聚物、共聚物、多糖衍生物、聚合物组装体以及高分子/纳米粒子杂化体系调控手性化合物立体选择性结晶的研究进展,讨论了聚合物添加剂的构效关系和高效回收策略,并对其今后发展提出一些看法.
Among chiral resolution methods
crystallization resolution is still a frequency used methods for obtaining enantiomerically pure chiral drugs or their intermediates in pharmaceutical industry owing to its simple operation and low cost. The reverse crystallization with the assistance of "tailor-made" additives is suitable for a wide range of substrates
shows high resolution efficiency
and has broad application prospects. Recent research advancements in the field of crystallization resolution using polymeroc additives have been comprehensively reviewed in this article. It includes homopolymers
copolymers
polysaccharide derivatives
polymer assemblies
and polymer/nanoparticle hybrids. In addition
the structure-activity relationship and efficient recovery strategy of the polymeric additives are discussed
and the future development of polymeric additives is proposed.
Sakai K. ; Hirayama N. ; Tamura R. Novel Optical Resolution Technologies. Springer, 2007 . doi: 10.1007/978-3-540-46320-7 http://dx.doi.org/10.1007/978-3-540-46320-7
Bredikhin A. A. ; Bredikhina Z. A. Stereoselective crystallization as a basis for single-enantiomer drug production . Chem. Eng. Technol. , 2017 , 40 ( 7 ), 1211 - 1220 . doi: 10.1002/ceat.201600649 http://dx.doi.org/10.1002/ceat.201600649
Kasprzyk-Hordern B. Pharmacologically active compounds in the environment and their chirality . Chem. Soc. Rev. , 2010 , 39 ( 11 ), 4466 - 4503 . doi: 10.1039/c000408c http://dx.doi.org/10.1039/c000408c
Núñez M. C. ; García-Rubiño M. E. ; Conejo-García A. ; Cruz-López O. ; Kimatrai M. ; Gallo M. A. ; Espinosa A. ; Campos J. M. Homochiral drugs: a demanding tendency of the pharmaceutical industry . Curr. Med. Chem. , 2009 , 16 ( 16 ), 2064 - 2074 . doi: 10.2174/092986709788682173 http://dx.doi.org/10.2174/092986709788682173
Lorenz H. ; Seidel-Morgenstern A. Processes to separate enantiomers . Angew. Chem. Int. Ed. , 2014 , 53 ( 5 ), 1218 - 1250 . doi: 10.1002/anie.201302823 http://dx.doi.org/10.1002/anie.201302823
Li Y. ; Kang S. M. ; Shi G. ; Chen Y. F. ; Li B. W. ; Zhang J. ; Wan X. H. Synthesis of proline-derived helical copolyacetylenes as chiral stationary phases for HPLC enantioseparation . Chinese J. Polym. Sci. , 2025 , 43 ( 1 ), 61 - 69 . doi: 10.1007/s10118-024-3249-7 http://dx.doi.org/10.1007/s10118-024-3249-7
Cascella F. ; Seidel-Morgenstern A. ; Lorenz H. Exploiting ternary solubility phase diagrams for resolution of enantiomers: an instructive example . Chem. Eng. Technol. , 2020 , 43 ( 2 ), 329 - 336 . doi: 10.1002/ceat.201900421 http://dx.doi.org/10.1002/ceat.201900421
Saseendran A. S. K. ; Jayaraj H. ; Kalathil K. K. ; Sarala A. S. Crystallisation based deracemisation and chiral resolution of small molecules . Chem. Asian J. , 2025 , Doi: 10.1002/asia.202401465 http://dx.doi.org/10.1002/asia.202401465
Gotrane D. M. ; Deshmukh R. D. ; Ranade P. V. ; Sonawane S. P. ; Bhawal B. M. ; Gharpure M. M. ; Gurjar M. K. A novel method for resolution of amlodipine . Org. Process Res. Dev. , 2010 , 14 ( 3 ), 640 - 643 . doi: 10.1021/op900283z http://dx.doi.org/10.1021/op900283z
Braga D. ; Degli Esposti L. ; Rubini K. ; Shemchuk O. ; Grepioni F. Ionic cocrystals of racemic and enantiopure histidine: an intriguing case of homochiral preference . Cryst. Growth Des. , 2016 , 16 ( 12 ), 7263 - 7270 . doi: 10.1021/acs.cgd.6b01426 http://dx.doi.org/10.1021/acs.cgd.6b01426
Shemchuk O. ; Song L. X. ; Robeyns K. ; Braga D. ; Grepioni F. ; Leyssens T. Solid-state chiral resolution mediated by stoichiometry: crystallizing etiracetam with ZnCl 2 . Chem. Commun. , 2018 , 54 ( 77 ), 10890 - 10892 . doi: 10.1039/c8cc06199h http://dx.doi.org/10.1039/c8cc06199h
Collet A. ; Brienne M. J. ; Jacques J. Optical resolution by direct crystallization of enantiomer mixtures . Chem. Rev. , 1980 , 80 ( 3 ), 215 - 230 . doi: 10.1021/cr60325a001 http://dx.doi.org/10.1021/cr60325a001
Mahieux J. ; Sanselme M. ; Harthong S. ; Melan C. ; Aronica C. ; Guy L. ; Coquerel G. Preparative resolution of (±)- bis -tetralone by means of autoseeded preferential crystallization induced by solvent evaporation (ASPre CISE) . Cryst. Growth Des. , 2013 , 13 ( 8 ), 3621 - 3631 . doi: 10.1021/cg400589u http://dx.doi.org/10.1021/cg400589u
Gendron F. X. ; Mahieux J. ; Sanselme M. ; Coquerel G. Resolution of baclofenium hydrogenomaleate by using preferential crystallization . A first case of complete solid solution at high temperature and a large miscibility gap in the solid state. Cryst. Growth Des. , 2019 , 19 ( 8 ), 4793 - 4801 . doi: 10.1021/acs.cgd.9b00665 http://dx.doi.org/10.1021/acs.cgd.9b00665
Temmel E. ; Eicke M. J. ; Cascella F. ; Seidel-Morgenstern A. ; Lorenz H. Resolution of racemic guaifenesin applying a coupled preferential crystallization-selective dissolution process: rational process development . Cryst. Growth Des. , 2019 , 19 ( 6 ), 3148 - 3157 . doi: 10.1021/acs.cgd.8b01660 http://dx.doi.org/10.1021/acs.cgd.8b01660
Hein J. E. ; Cao B. H. ; van der Meijden M. W. ; Leeman M. ; Kellogg R. M. Resolution of omeprazole using coupled preferential crystallization: efficient separation of a nonracemizable conglomerate salt under near-equilibrium conditions . Org. Process Res. Dev. , 2013 , 17 ( 6 ), 946 - 950 . doi: 10.1021/op400081c http://dx.doi.org/10.1021/op400081c
洪诗斌 , 袁耀锋 . 晶体形成与三维分子结构的相关性研究——2021年沃尔夫化学奖浅析 . 大学化学 , 2022 , 37 ( 1 ), 2104048 - 2104054 .
Addadi L. ; Berkovitch-Yellin Z. ; Domb N. ; Gati E. ; Lahav M. ; Leiserowitz L. Resolution of conglomerates by stereoselective habit modifications . Nature , 1982 , 296 ( 5852 ), 21 - 26 . doi: 10.1038/296021a0 http://dx.doi.org/10.1038/296021a0
Weissbuch I. ; Lahav M. ; Leiserowitz L. Toward stereochemical control, monitoring, and understanding of crystal nucleation . Cryst. Growth Des. , 2003 , 3 ( 2 ), 125 - 150 . doi: 10.1021/cg0200560 http://dx.doi.org/10.1021/cg0200560
Addadi L. ; Weinstein S. ; Gati E. ; Weissbuch I. ; Lahav M. Resolution of conglomerates with the assistance of tailor-made impurities . Generality and mechanistic aspects of the "rule of reversal". A new method for assignment of absolute configuration. J. Am. Chem. Soc. , 1982 , 104 ( 17 ), 4610 - 4617 . doi: 10.1021/ja00381a018 http://dx.doi.org/10.1021/ja00381a018
Zbaida D. ; Weissbuch I. ; Shavit-Gati E. ; Addadi L. ; Leiserowitz L. ; Lahav M. Design of chiral polymers for the kinetic resolution of racemic conglomerates . React. Polym. Ion Exch. Sorbents , 1987 , 6 ( 2-3 ), 241 - 253 . doi: 10.1016/0167-6989(87)90095-x http://dx.doi.org/10.1016/0167-6989(87)90095-x
Berfeld M. ; Zbaida D. ; Leiserowitz L. ; Lahav M. 'tailor-made' polymers for the removal of lamellar twinning: resolution of α -amino acids by entrainment . Adv. Mater. , 1999 , 11 ( 4 ), 328 - 331 . doi: 10.1002/(sici)1521-4095(199903)11:4<328::aid-adma328>3.0.co;2-v http://dx.doi.org/10.1002/(sici)1521-4095(199903)11:4<328::aid-adma328>3.0.co;2-v
Staab E. ; Addadi L. ; Leiserowitz L. ; Lahav M. Control of polymorphism by 'tailor-made' polymeric crystallization auxiliaries . Preferential precipitation of a metastable polar form for second harmonic generation. Adv. Mater. , 1990 , 2 ( 1 ), 40 - 43 . doi: 10.1002/adma.19900020108 http://dx.doi.org/10.1002/adma.19900020108
Weissbuch I. ; Zbaida D. ; Addadi L. ; Leiserowitz L. ; Lahav M. Design of polymeric inhibitors for the control of crystal polymorphism . Induced enantiomeric resolution at racemic histidine by crystallization at 25 ℃. J. Am. Chem. Soc ., 1987 , 109 ( 6 ), 1869 - 1871 . doi: 10.1021/ja00240a052 http://dx.doi.org/10.1021/ja00240a052
Li N. ; Wang H. ; Zhang J. ; Wan X. H. Controlled synthesis of chiral polymers for the kinetic resolution of racemic amino acids . Polym. Chem. , 2014 , 5 ( 5 ), 1702 - 1710 . doi: 10.1039/c3py01297b http://dx.doi.org/10.1039/c3py01297b
Ye X. C. ; Zhang J. ; Cui J. X. ; Wan X. H. Thermo-responsive recoverable polymeric inhibitors for the resolution of racemic amino acids . Chem. Commun. , 2018 , 54 ( 22 ), 2785 - 2787 . doi: 10.1039/c8cc00333e http://dx.doi.org/10.1039/c8cc00333e
Ye X. C. ; Wang Z. X. ; Zhang J. ; Wan X. H. Noncovalently functionalized commodity polymers as tailor-made additives for stereoselective crystallization . Angew. Chem. Int. Ed. , 2021 , 60 ( 37 ), 20243 - 20248 . doi: 10.1002/anie.202106603 http://dx.doi.org/10.1002/anie.202106603
Li J. ; Wang Z. ; Ye X. ; Wan X. Efficient preparation of "tailor-made" polymeric additives for the selective crystallization of racemates . Acta Polymerica Sinica , 2023 , 10.11777/j.issn1000-3304.2023.23091
Zhan J. ; Lin H. P. ; Mou C. Y. Biomimetic formation of porous single-crystalline CaCO 3 via nanocrystal aggregation . Adv. Mater. , 2003 , 15 ( 7-8 ), 621 - 623 . doi: 10.1002/adma.200304600 http://dx.doi.org/10.1002/adma.200304600
Antonietti M. ; Breulmann M. ; Göltner C. G. ; Cölfen H. ; Wong K. K. W. ; Walsh D. ; Mann S. Inorganic/organic mesostructures with complex architectures: precipitation of calcium phosphate in the presence of double-hydrophilic block copolymers . Chem. Eur. J. , 1998 , 4 ( 12 ), 2493 - 2500 . doi: 10.1002/(sici)1521-3765(19981204)4:12<2493::aid-chem2493>3.0.co;2-v http://dx.doi.org/10.1002/(sici)1521-3765(19981204)4:12<2493::aid-chem2493>3.0.co;2-v
Qi L. M. ; Cölfen H. ; Antonietti M. Crystal design of barium sulfate using double-hydrophilic block copolymers . Angew. Chem. Int. Ed. , 2000 , 39 ( 3 ), 604 - 607 . doi: 10.1002/(sici)1521-3773(20000204)39:3<604::aid-anie604>3.0.co;2-b http://dx.doi.org/10.1002/(sici)1521-3773(20000204)39:3<604::aid-anie604>3.0.co;2-b
Menahem T. ; Pravda M. ; Mastai Y. Correlation between structures of chiral polymers and their efficiency for chiral resolution by crystallization . Chirality , 2009 , 21 ( 9 ), 862 - 870 . doi: 10.1002/chir.20724 http://dx.doi.org/10.1002/chir.20724
Mastai Y. ; Sedlák M. ; Cölfen H. ; Antonietti M. The separation of racemic crystals into enantiomers by chiral block copolymers . Chem. Eur. J. , 2002 , 8 ( 11 ), 2429 - 2437 . doi: 10.1002/1521-3765(20020603)8:11<2429::aid-chem2429>3.0.co;2-6 http://dx.doi.org/10.1002/1521-3765(20020603)8:11<2429::aid-chem2429>3.0.co;2-6
Wohlrab S. ; Pinna N. ; Antonietti M. ; Cölfen H. Polymer-induced alignment of dl-alanine nanocrystals to crystalline mesostructures . Chem. Eur. J. , 2005 , 11 ( 10 ), 2903 - 2913 . doi: 10.1002/chem.200400420 http://dx.doi.org/10.1002/chem.200400420
Mori H. ; Matsuyama M. ; Endo T. Assembled structures and chiroptical properties of amphiphilic block copolymers synthesized by RAFT polymerization of N-acryloyl-L-alanine . Macromol. Chem. Phys. , 2008 , 209 ( 20 ), 2100 - 2112 . doi: 10.1002/macp.200800254 http://dx.doi.org/10.1002/macp.200800254
Kim B. S. ; Qiu J. M. ; Wang J. P. ; Andrew Taton T. Magnetomicelles: composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers . Nano Lett. , 2005 , 5 ( 10 ), 1987 - 1991 . doi: 10.1021/nl0513939 http://dx.doi.org/10.1021/nl0513939
Ladmiral V. ; Semsarilar M. ; Canton I. ; Armes S. P. Polymerization-induced self-assembly of galactose-functionalized biocompatible diblock copolymers for intracellular delivery . J. Am. Chem. Soc. , 2013 , 135 ( 36 ), 13574 - 13581 . doi: 10.1021/ja407033x http://dx.doi.org/10.1021/ja407033x
Ding L. ; Chen C. N. ; Deng J. P. ; Yang W. T. Optically active thermosensitive amphiphilic polymer brushes based on helical polyacetylene: preparation through "click" onto grafting method and self-assembly . Polym. Bull. , 2012 , 69 ( 9 ), 1023 - 1040 . doi: 10.1007/s00289-012-0790-2 http://dx.doi.org/10.1007/s00289-012-0790-2
Tan J. J. ; Li Y. X. ; Liu R. G. ; Kang H. L. ; Wang D. Q. ; Ma L. ; Liu W. Y. ; Wu M. ; Huang Y. Micellization and sustained drug release behavior of EC- g -PPEGMA amphiphilic copolymers . Carbohydr. Polym. , 2010 , 81 ( 2 ), 213 - 218 . doi: 10.1016/j.carbpol.2010.02.017 http://dx.doi.org/10.1016/j.carbpol.2010.02.017
Yang L. ; Tang Y. ; Liu N. ; Liu C. H. ; Ding Y. S. ; Wu Z. Q. Facile synthesis of hybrid silica nanoparticles grafted with helical poly(phenyl isocyanide)s and their enantioselective crystallization ability . Macromolecules , 2016 , 49 ( 20 ), 7692 - 7702 . doi: 10.1021/acs.macromol.6b01870 http://dx.doi.org/10.1021/acs.macromol.6b01870
Ye X. C. ; Cui J. X. ; Li B. W. ; Li N. ; Zhang J. ; Wan X. H. Self-reporting inhibitors: a single crystallization process to obtain two optically pure enantiomers . Angew. Chem. Int. Ed. , 2018 , 57 ( 27 ), 8120 - 8124 . doi: 10.1002/anie.201803480 http://dx.doi.org/10.1002/anie.201803480
Li B. W. ; Li N. ; Wang Z. X. ; Ye X. C. ; Zhang J. ; Wan X. H. High-performance nano-splitters containing aggregation-induced emission luminogens for stereoselective crystallization obtained via polymerization-induced self-assembly . Aggregate , 2021 , 2 ( 6 ), e 129 . doi: 10.1002/agt2.129 http://dx.doi.org/10.1002/agt2.129
Ye X. C. ; Cui J. X. ; Li B. W. ; Li N. ; Wang R. ; Yan Z. J. ; Tan J. Y. ; Zhang J. ; Wan X. H. Enantiomer-selective magnetization of conglomerates for quantitative chiral separation . Nat. Commun. , 2019 , 10 , 1964 . doi: 10.1038/s41467-019-09997-y http://dx.doi.org/10.1038/s41467-019-09997-y
Medina D. D. ; Goldshtein J. ; Margel S. ; Mastai Y. Enantioselective crystallization on chiral polymeric microspheres . Adv. Funct. Mater. , 2007 , 17 ( 6 ), 944 - 950 . doi: 10.1002/adfm.200600408 http://dx.doi.org/10.1002/adfm.200600408
Chen B. ; Deng J. P. ; Yang W. T. Hollow two-layered chiral nanoparticles consisting of optically active helical polymer/silica: preparation and application for enantioselective crystallization . Adv. Funct. Mater. , 2011 , 21 ( 12 ), 2345 - 2350 . doi: 10.1002/adfm.201100113 http://dx.doi.org/10.1002/adfm.201100113
Zhang D. ; Song C. ; Deng J. ; Yang W. Chiral microspheres consisting purely of optically active helical substituted polyacetylene: the first preparation via precipitation polymerization and application in enantioselective crystallization . Macromolecules , 2012 , 45 ( 18 ), 7329 - 7338 . doi: 10.1021/ma301250u http://dx.doi.org/10.1021/ma301250u
Xiao Y. ; Wang H. Q. ; Zhang H. ; Jiang Z. Q. ; Wang Y. Q. ; Li H. ; Yin J. ; Zhu Y. Y. ; Wu Z. Q. Grafting polymerization of single-handed helical poly(phenyl isocyanide)s on graphene oxide and their application in enantioselective separation . J. Polym. Sci. Part A Polym. Chem. , 2017 , 55 ( 12 ), 2092 - 2103 . doi: 10.1002/pola.28599 http://dx.doi.org/10.1002/pola.28599
Xu L. ; Wu Y. J. ; Gao R. T. ; Li S. Y. ; Liu N. ; Wu Z. Q. Visible helicity induction and memory in polyallene toward circularly polarized luminescence, helicity discrimination, and enantiomer separation . Angew. Chem. Int. Ed. , 2023 , 62 ( 13 ), e 202217234 . doi: 10.1002/anie.202217234 http://dx.doi.org/10.1002/anie.202217234
Ilevbare G. A. ; Liu H. Y. ; Edgar K. J. ; Taylor L. S. Understanding polymer properties important for crystal growth inhibition: impact of chemically diverse polymers on solution crystal growth of ritonavir . Cryst. Growth Des. , 2012 , 12 ( 6 ), 3133 - 3143 . doi: 10.1021/cg300325p http://dx.doi.org/10.1021/cg300325p
Schram C. J. ; Beaudoin S. P. ; Taylor L. S. Impact of polymer conformation on the crystal growth inhibition of a poorly water-soluble drug in aqueous solution . Langmuir , 2015 , 31 ( 1 ), 171 - 179 . doi: 10.1021/la503644m http://dx.doi.org/10.1021/la503644m
Petrova R. I. ; Swift J. A. Selective growth and distribution of crystalline enantiomers in hydrogels . J. Am. Chem. Soc. , 2004 , 126 ( 4 ), 1168 - 1173 . doi: 10.1021/ja0392263 http://dx.doi.org/10.1021/ja0392263
Alexander A. J. Crystallization of sodium chlorate with d -glucose co-solute is not enantios elective . Cryst. Growth Des. , 2008 , 8 ( 8 ), 2630 - 2632 . doi: 10.1021/cg800540z http://dx.doi.org/10.1021/cg800540z
Jiang L. ; Titmuss S. ; Cowley A. ; Klein J. Direct measurement of forces between cell-coating polymers and chiral crystal surfaces: the enantioselectivity of hyaluronan . Soft Matter , 2008 , 4 ( 7 ), 1521 - 1530 . doi: 10.1039/b717940e http://dx.doi.org/10.1039/b717940e
Wang Z. X. ; Ye X. C. ; Chen Y. F. ; Liu Y. Z. ; Xie S. Y. ; Tao Y. ; Zhang J. ; Wan X. H. Stereoselective crystallization of chiral pharmaceuticals aided by cellulose derivatives through helical pattern matching . Chem. Eur. J. , 2024 , 30 ( 49 ), e 202401550 . doi: 10.1002/chem.202401550 http://dx.doi.org/10.1002/chem.202401550
0
Views
10
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution