浏览全部资源
扫码关注微信
东华大学 先进纤维材料全国重点实验室 先进低维材料中心 材料科学与工程学院 上海 201620
Shu-guang Yang, E-mail: shgyang@dhu.edu.cn
Received:18 February 2025,
Accepted:2025-03-31,
Published Online:22 April 2025,
移动端阅览
刘泽新, 尹培阳, 黄浩, 张彩虹, 杨曙光. 高分子氢键复合物蠕变行为研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25040
Liu, Z. X.; Yin, P. Y.; Huang, H.; Zhang, C. H.; Yang, S. G. Study on creep behavior of hydrogen-bonded polymer complexes. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25040
刘泽新, 尹培阳, 黄浩, 张彩虹, 杨曙光. 高分子氢键复合物蠕变行为研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25040 DOI: CSTR: 32057.14.GFZXB.2025.7391.
Liu, Z. X.; Yin, P. Y.; Huang, H.; Zhang, C. H.; Yang, S. G. Study on creep behavior of hydrogen-bonded polymer complexes. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25040 DOI: CSTR: 32057.14.GFZXB.2025.7391.
蠕变行为对于材料的服役应用至关重要. 蠕变分析测试可以有效反映高分子材料的黏弹性本质,解析高分子材料长时间尺度下的力学松弛行为. 本研究以聚丙烯酸(PAA)和聚环氧乙烷(PEO)构筑氢键复合物,并利用共价交联和金属离子配位作用增强氢键网络,研究温度和湿度这两种最主要的环境参数对其蠕变行为的影响. 分别通过时间-湿度叠加和时间-温度叠加构建蠕变柔量主曲线,进一步结合湿度和温度对时间的叠加,构建了更长时间尺度的主曲线,解析了长时间尺度下的力学松弛行为,指导其实际服役和应用.
Creep behavior is critical for the service applications of materials. Creep analysis tests can effectively reflect the viscoelastic properties of polymer materials and evaluate the mechanical relaxation behavior of polymer complexes over long time scales. In this work
polyacrylic acid (PAA) and polyethylene oxide (PEO) were used to construct hydrogen-bonded polymer complexes
and covalent cross-linking and metal ion coordination were used to strengthen the hydrogen bond network. The influence of temperature and humidity
the two main environmental parameters
on the creep behavior of these complexes were investigated. With the increase in temperatu
re or humidity
the creep deformation of the three types of films also increases. The creep compliance master curve was constructed by time-humidity superposition and time-temperature superposition respectively. The temperature shift factor (
a
T
) conforms to the Williams-Landel-Ferry (WLF) equation. The humidity shift factor (
a
w
) is shown as a piecewise linear dependence of water ratio. The coupling of environmental factors greatly affects the properties of hydrogen-bonded complexes. Further combined with the superposition of humidity and temperature on time
the main curve of a longer time scale is constructed
and the mechanical relaxation behavior under a long time scale is analyzed and expounded
so as to guide its practical service and application.
Lutz J. F. ; Lehn J. M. ; Meijer E. W. ; Matyjaszewski K. From precision polymers to complex materials and systems . Nat. Rev. Mater. , 2016 , 1 , 16024 . doi: 10.1038/natrevmats.2016.24 http://dx.doi.org/10.1038/natrevmats.2016.24
Binder W. H. ; Zirbs, R. Hydrogen bonded polymers . In: Advances in Polymer Science . Berlin Heidelberg : Springer , 2007 . Vol. 207. doi: 10.1007/12_2006_109 http://dx.doi.org/10.1007/12_2006_109
Amoli V. ; Kim J. S. ; Jee E. ; Chung Y. S. ; Kim S. Y. ; Koo J. ; Choi H. ; Kim Y. ; Kim D. H. A bioinspired hydrogen bond-triggered ultrasensitive ionic mechanoreceptor skin . Nat. Commun. , 2019 , 10 ( 1 ), 4019 . doi: 10.1038/s41467-019-11973-5 http://dx.doi.org/10.1038/s41467-019-11973-5
Kang J. ; Son D. ; Wang G. N. ; Liu Y. X. ; Lopez J. ; Kim Y. ; Oh J. Y. ; Katsumata T. ; Mun J. ; Lee Y. ; Jin L. H. ; Tok J. B. ; Bao Z. N. Tough and water-insensitive self-healing elastomer for robust electronic skin . Adv. Mater. , 2018 , 30 ( 13 ), 1706846 . doi: 10.1002/adma.201706846 http://dx.doi.org/10.1002/adma.201706846
Lamberty Z. D. ; Tran N. T. ; van Engers C. D. ; Karnal P. ; Knorr D. B. Jr, Frechette, J. Cooperative tridentate hydrogen-bonding interactions enable strong underwater adhesion . ACS Appl. Mater. Interfaces , 2023 , 15 ( 29 ), 35720 - 35731 . doi: 10.1021/acsami.3c06545 http://dx.doi.org/10.1021/acsami.3c06545
王振宇 , 牛文文 , 张卓强 , 刘小孔 . 氢键交联超分子聚合物材料: 从结构性能到功能应用 . 高分子学报 , 2023 , 54 ( 9 ), 1272 - 1289 . doi: 10.11777/j.issn1000-3304.2023.23064 http://dx.doi.org/10.11777/j.issn1000-3304.2023.23064
Qie R. T. ; Zajforoushan Moghaddam S. ; Thormann E. A curable underwater adhesive based on poly(propylene oxide) and tannic acid coacervate . ACS Appl. Polym. Mater. , 2023 , 5 ( 3 ), 1646 - 1650 . doi: 10.1021/acsapm.2c02018 http://dx.doi.org/10.1021/acsapm.2c02018
Wang Z. X. ; Si M. Q. ; Han J. Y. ; Shen Y. ; Yin G. Q. ; Yin K. Y. ; Xiao P. ; Chen T. Hydrogen-bonded supramolecular network enabled gentle reprogramming of liquid crystal elastomer toward evolutionary robot . Angew. Chem. Int. Ed Engl. , 2025 , 64 ( 7 ), e 202416095 . doi: 10.1002/anie.202580761 http://dx.doi.org/10.1002/anie.202580761
Liu D. Z. ; Zhu L. P. ; Huang W. T. ; Yue K. ; Yang S. G. Polymer complex fiber for linear actuation with high working density and stable catch-state . ACS Macro Lett. , 2020 , 9 ( 11 ), 1507 - 1513 . doi: 10.1021/acsmacrolett.0c00633 http://dx.doi.org/10.1021/acsmacrolett.0c00633
Wang W. J. ; Xu X. ; Zhang C. H. ; Huang H. ; Zhu L. P. ; Yue K. ; Zhu M. F. ; Yang S. G. Skeletal muscle fibers inspired polymeric actuator by assembly of triblock polymers . Adv. Sci. , 2022 , 9 ( 13 ), e 2105764 . doi: 10.1002/advs.202105764 http://dx.doi.org/10.1002/advs.202105764
Zhu M. M. ; Wang W. J. ; Zhang C. H. ; Zhu L. P. ; Yang S. G. Photo-responsive behaviors of hydrogen-bonded polymer complex fibers containing azobenzene functional groups . Adv. Fiber Mater. , 2021 , 3 ( 3 ), 172 - 179 . doi: 10.1007/s42765-021-00080-0 http://dx.doi.org/10.1007/s42765-021-00080-0
Huang H. ; Trentle M. ; Liu Z. X. ; Xiang K. H. ; Higgins W. ; Wang Y. B. ; Xue B. ; Yang S. G. Polymer complex fiber: Property, functionality, and applications . ACS Appl. Mater. Interfaces , 2023 , 15 ( 6 ), 7639 - 7662 . doi: 10.1021/acsami.2c19583 http://dx.doi.org/10.1021/acsami.2c19583
张彩虹 , 王伟杰 , 黄浩 , 刘泽新 , 杨曙光 . 湿度对高分子氢键复合物纤维力学行为的影响 . 高分子学报 , 2023 , 54 ( 11 ), 1772 - 1783 .
王伟杰 , 张彩虹 , 黄浩 , 刘泽新 , 简韩鑫 , 杨曙光 . 微相分离结合氢键复合构筑弹性体 . 高分子学报 , 2023 , 54 ( 4 ), 487 - 495 . doi: 10.11777/j.issn1000-3304.2022.22314 http://dx.doi.org/10.11777/j.issn1000-3304.2022.22314
Wang Y. ; Xie Y. J. ; Xie X. Y. ; Wu D. ; Wu H. T. ; Luo X. Q. ; Wu Q. ; Zhao L. J. ; Wu J. R. Compliant and robust tissue-like hydrogels via ferric ion-induced of hierarchical structure . Adv. Funct. Mater. , 2023 , 33 ( 12 ), 2210224 . doi: 10.1002/adfm.202210224 http://dx.doi.org/10.1002/adfm.202210224
Yang L. ; Wang Z. H. ; Wang H. ; Jin B. Q. ; Meng C. Z. ; Chen X. ; Li R. Z. ; Wang H. ; Xin M. Y. ; Zhao Z. S. ; Guo S. J. ; Wu J. R. ; Cheng H. Y. Self-healing, reconfigurable, thermal-switching, transformative electronics for health monitoring . Adv. Mater. , 2023 , 35 ( 15 ), e 2207742 .
Luo W. B. ; Wang C. H. ; Hu X. L. ; Yang T. Q. Long-term creep assessment of viscoelastic polymer by time-temperature-stress superposition . Acta Mech. Solida Sin. , 2012 , 25 ( 6 ), 571 - 578 . doi: 10.1016/s0894-9166(12)60052-4 http://dx.doi.org/10.1016/s0894-9166(12)60052-4
Lewis C. L. ; Stewart K. ; Anthamatten M. The influence of hydrogen bonding side-groups on viscoelastic behavior of linear and network polymers . Macromolecules , 2014 , 47 ( 2 ), 729 - 740 . doi: 10.1021/ma402368s http://dx.doi.org/10.1021/ma402368s
Xing K. Y. ; Tress M. ; Cao P. F. ; Fan F. ; Cheng S. W. ; Saito T. ; Sokolov A. P. The role of chain-end association lifetime in segmental and chain dynamics of telechelic polymers . Macromolecules , 2018 , 51 ( 21 ), 8561 - 8573 . doi: 10.1021/acs.macromol.8b01210 http://dx.doi.org/10.1021/acs.macromol.8b01210
Simsiriwong J. ; Sullivan R. W. ; Lacy T. E. ; Hilton H. H. A statistical approach to characterize the viscoelastic creep compliances of a vinyl ester polymer . Polym. Test. , 2015 , 48 , 183 - 198 . doi: 10.1016/j.polymertesting.2015.10.001 http://dx.doi.org/10.1016/j.polymertesting.2015.10.001
Kühl A. ; Polak M. A. A novel methodology to model the creep behavior of polymers at different temperatures . Polym. Eng. Sci. , 2021 , 61 ( 12 ), 3104 - 3117 . doi: 10.1002/pen.25823 http://dx.doi.org/10.1002/pen.25823
An T. ; Selvaraj R. ; Hong S. ; Kim N. Creep behavior of ABS polymer in temperature-humidity conditions . J. Mater. Eng. Perform. , 2017 , 26 ( 6 ), 2754 - 2762 . doi: 10.1007/s11665-017-2680-0 http://dx.doi.org/10.1007/s11665-017-2680-0
Dogan O. Short-term creep behaviour of different polymers used in additive manufacturing under different thermal and loading conditions . Strojniški Vestnik J. Mech. Eng. , 2022 , 68 ( 7-8 ), 451 - 460 . doi: 10.5545/sv-jme.2022.191 http://dx.doi.org/10.5545/sv-jme.2022.191
Duan X. C. ; Yuan H. W. ; Tang W. ; He J. J. ; Guan X. F. A phenomenological primary-secondary-tertiary creep model for polymer-bonded composite materials . Polymers , 2021 , 13 ( 14 ), 2353 . doi: 10.3390/polym13142353 http://dx.doi.org/10.3390/polym13142353
Li Y. H. ; Jiang C. K. Time-temperature-stress superposition principle: brief description and application to polymer creep behavior . Adv. Mater. Res. , 2012 , 602 - 604 , 681 - 684 .
Ho J. S. ; Greenbaum S. G. Polymer capacitor dielectrics for high temperature applications . ACS Appl. Mater. Interfaces , 2018 , 10 ( 35 ), 29189 - 29218 . doi: 10.1021/acsami.8b07705 http://dx.doi.org/10.1021/acsami.8b07705
Suarez-Martinez P. C. ; Batys P. ; Sammalkorpi M. ; Lutkenhaus J. L. Time-temperature and time-water superposition principles applied to poly(allylamine)/poly(acrylic acid) complexes . Macromolecules , 2019 , 52 ( 8 ), 3066 - 3074 . doi: 10.1021/acs.macromol.8b02512 http://dx.doi.org/10.1021/acs.macromol.8b02512
Sopade P. A. ; Halley P. ; Bhandari B. ; D'Arcy B. ; Doebler C. ; Caffin N. Application of the Williams-Landel-Ferry model to the viscosity-temperature relationship of Australian honeys . J. Food Eng. , 2003 , 56 ( 1 ), 67 - 75 . doi: 10.1016/s0260-8774(02)00149-8 http://dx.doi.org/10.1016/s0260-8774(02)00149-8
Mandlekar N. ; Rana B. ; Maurya P. ; Butola B. S. ; Joshi M. Long-term prediction of creep and stress-relaxation behaviour in synthetic fabrics using the time-temperature superposition principle . Fibres. Polym. , 2023 , 24 ( 6 ), 2195 - 2207 . doi: 10.1007/s12221-023-00181-0 http://dx.doi.org/10.1007/s12221-023-00181-0
Koyanagi J. ; Hasegawa K. ; Ohtani A. ; Sakai T. ; Sakaue K. Formulation of non-linear viscoelastic-viscoplastic constitutive equation for polyamide 6 resin . Heliyon , 2021 , 7 ( 2 ), e 06335 . doi: 10.1016/j.heliyon.2021.e06335 http://dx.doi.org/10.1016/j.heliyon.2021.e06335
Du C. ; Zhang X. N. ; Sun T. L. ; Du M. ; Zheng Q. ; Wu Z. L. Hydrogen-bond association-mediated dynamics and viscoelastic properties of tough supramolecular hydrogels . Macromolecules , 2021 , 54 ( 9 ), 4313 - 4325 . doi: 10.1021/acs.macromol.1c00152 http://dx.doi.org/10.1021/acs.macromol.1c00152
Zhang X. N. ; Du C. ; Wang Y. J. ; Hou L. X. ; Du M. ; Zheng Q. ; Wu Z. L. Influence of the α -methyl group on elastic-to-glassy transition of supramolecular hydrogels with hydrogen-bond associations . Macromolecules , 2022 , 55 ( 17 ), 7512 - 7525 . doi: 10.1021/acs.macromol.2c00829 http://dx.doi.org/10.1021/acs.macromol.2c00829
Pettersson L. G. ; Henchman R. H. ; Nilsson A. Water-the most anomalous liquid . Chem. Rev. , 2016 , 116 ( 13 ), 7459 - 7462 . doi: 10.1021/acs.chemrev.6b00363 http://dx.doi.org/10.1021/acs.chemrev.6b00363
Hübert, T. Humidity-sensing materials . MRS Bull. , 1999 , 24 ( 6 ), 49 - 54 . doi: 10.1557/s0883769400052519 http://dx.doi.org/10.1557/s0883769400052519
Li J. F. ; Wang Z. L. ; Wen L. G. ; Nie J. ; Yang S. G. ; Xu J. ; Cheng S. Z. D. Highly elastic fibers made from hydrogen-bonded polymer complex . ACS Macro Lett. , 2016 , 5 ( 7 ), 814 - 818 . doi: 10.1021/acsmacrolett.6b00346 http://dx.doi.org/10.1021/acsmacrolett.6b00346
Lutkenhaus J. L. ; McEnnis K. ; Hammond P. T. Tuning the glass transition of and ion transport within hydrogen-bonded layer-by-layer assemblies . Macromolecules , 2007 , 40 ( 23 ), 8367 - 8373 . doi: 10.1021/ma0713557 http://dx.doi.org/10.1021/ma0713557
Wang W. J. ; Zhang C. H. ; Huang H. ; Xue B. ; Yang S. G. Ambient environment adaptive elastomer constructed by microphase separation and segment complexation of triblock copolymers . ACS Appl. Mater. Interfaces , 2023 , 15 ( 18 ), 22426 - 22434 . doi: 10.1021/acsami.3c02931 http://dx.doi.org/10.1021/acsami.3c02931
Huang W. T. ; Li J. F. ; Liu D. Z. ; Tan S. X. ; Zhang P. F. ; Zhu L. P. ; Yang S. G. Polyelectrolyte complex fiber of alginate and poly(diallyldimethylammonium chloride): humidity-induced shape memory and mechanical transition . ACS Appl. Polym. Mater. , 2020 , 2 ( 6 ), 2119 - 2125 . doi: 10.1021/acsapm.0c00056 http://dx.doi.org/10.1021/acsapm.0c00056
Lalwani S. M. ; Batys P. ; Sammalkorpi M. ; Lutkenhaus J. L. Relaxation times of solid-like polyelectrolyte complexes of varying pH and water content . Macromolecules , 2021 , 54 ( 17 ), 7765 - 7776 . doi: 10.1021/acs.macromol.1c00940 http://dx.doi.org/10.1021/acs.macromol.1c00940
Liu Z. X. ; Liu D. Z. ; Zhang C. H. ; Wang W. J. ; Huang H. ; Yang S. G. Stabilize and reinforce hydrogen-bonded polymer complex elastic fiber by catechol chemistry and coordination . Chinese J. Polym. Sci. , 2023 , 41 ( 12 ), 1846 - 1855 . doi: 10.1007/s10118-023-2992-5 http://dx.doi.org/10.1007/s10118-023-2992-5
Hamad F. G. ; Chen Q. ; Colby R. H. Linear viscoelasticity and swelling of polyelectrolyte complex coacervates . Macromolecules , 2018 , 51 ( 15 ), 5547 - 5555 . doi: 10.1021/acs.macromol.8b00401 http://dx.doi.org/10.1021/acs.macromol.8b00401
Xu B. W. ; van den Hurk B. ; Lugger S. J. D. ; Liu T. ; Blok R. ; Teuffel P. Effect of environmental humidity on the creep behavior of flax fiber-reinforced polymer composites . Polym. Compos. , 2023 , 44 ( 9 ), 6108 - 6121 . doi: 10.1002/pc.27550 http://dx.doi.org/10.1002/pc.27550
Majsztrik P. W. ; Bocarsly A. B. ; Benziger J. B. Viscoelastic respons e of nafion. Effects of temperature and hydration on tensile creep . Macromolecules , 2008 , 41 ( 24 ), 9849 - 9862 . doi: 10.1021/ma801811m http://dx.doi.org/10.1021/ma801811m
Parodi E. ; Peters G. W. M. ; Govaert L. E. Prediction of plasticity-controlled failure in polyamide 6: influence of temperature and relative humidity . J. Appl. Polym. Sci. , 2018 , 135 ( 11 ), 45942 . doi: 10.1002/app.45942 http://dx.doi.org/10.1002/app.45942
Satouri S. ; Chekkour R. ; Chatzigeorgiou G. ; Meraghni F. ; Robert G. Numerical-experimental approach to identify the effect of relative humidity on the material parameters of a rate-dependent damage model for polyamide 66 . Mech. Mater. , 2023 , 184 , 104735 . doi: 10.1016/j.mechmat.2023.104735 http://dx.doi.org/10.1016/j.mechmat.2023.104735
Zhou S. M. ; Tashiro K. ; Ii T. Confirmation of universality of time-humidity superposition principle for various water-absorbable polymers through dynamic viscoelastic measurements under controlled conditions of relative humidity and temperature . J. Polym. Sci. Part B Polym. Phys. , 2001 , 39 ( 14 ), 1638 - 1650 . doi: 10.1002/polb.1135 http://dx.doi.org/10.1002/polb.1135
Zhang X. L. ; Hu H. J. ; Guo M. X. Relaxation of a hydrophilic polymer induced by moisture desorption through the glass transition . Phys. Chem. Chem. Phys. , 2015 , 17 ( 5 ), 3186 - 3195 . doi: 10.1039/c4cp04966g http://dx.doi.org/10.1039/c4cp04966g
Huang H. ; Liu Z. X. ; Jian H. X. ; Yao Y. ; Xue B. ; Yang S. G. Humidity-adaptive behaviors of alginate/chitosan complex fiber . ACS Appl. Polym. Mater. , 2024 , 6 ( 8 ), 4634 - 4641 . doi: 10.1021/acsapm.4c00210 http://dx.doi.org/10.1021/acsapm.4c00210
Wortmann F. J. ; De Jong S. Analysis of the humidity-time superposition for wool fibers . Text. Res. J. , 1985 , 55 ( 12 ), 750 - 756 . doi: 10.1177/004051758505501207 http://dx.doi.org/10.1177/004051758505501207
Liu Z. X. ; Huang H. ; Yin P. Y. ; Zhang C. H. ; Yang S. G. Dynamics of hydrogen-bonded polymer complexes of poly(ether oxide) and poly(acrylic acid): time-humidity-temperature equivalence . Polymer , 2025 , 320 , 128080 . doi: 10.1016/j.polymer.2025.128080 http://dx.doi.org/10.1016/j.polymer.2025.128080
Manoj Lalwani S. ; Eneh C. I. ; Lutkenhaus J. L. Emerging trends in the dynamics of polyelectrolyte complexes . Phys. Chem. Chem. Phys. , 2020 , 22 ( 42 ), 24157 - 24177 . doi: 10.1039/d0cp03696j http://dx.doi.org/10.1039/d0cp03696j
Goldstein M. On the temperature dependence of cooperative relaxation properties in glass-forming liquids: comment on a paper by Adam and Gibbs . J. Chem. Phys. , 1965 , 43 ( 5 ), 1852 - 1853 . doi: 10.1063/1.1697038 http://dx.doi.org/10.1063/1.1697038
Lomellini P. Williams-landel-ferry versus Arrhenius behaviour: polystyrene melt viscoelasticity revised . Polymer , 1992 , 33 ( 23 ), 4983 - 4989 . doi: 10.1016/0032-3861(92)90049-3 http://dx.doi.org/10.1016/0032-3861(92)90049-3
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution