浏览全部资源
扫码关注微信
1.中国海洋大学材料科学与工程学院 青岛 266100
2.中国科学院青岛生物能源与过程研究所 青岛 266101
Shui-xing Dai, E-mail: sxdai@pku.edu.cn, daishuixing@ouc.edu.cn
Received:05 March 2025,
Accepted:23 May 2025,
Published Online:12 June 2025,
移动端阅览
胡锦祺, 姜基磊, 代水星, 刘昊, 崔伦秀, 宋蕙馨, 江河清, 黄明华. 基于苯并二噻吩的萘甲酰亚胺界面材料的合成及光伏性能研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25063
Hu, J. Q.; Jiang, J. L.; Dai,S. X.; Liu, H.; Cui, L. X.; Song, H. X.; Jiang, H. Q.; Huang, M. H. Benzodithiophene-functionalized naphthalimide cathode interlayers for organic solar cell. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25063
胡锦祺, 姜基磊, 代水星, 刘昊, 崔伦秀, 宋蕙馨, 江河清, 黄明华. 基于苯并二噻吩的萘甲酰亚胺界面材料的合成及光伏性能研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25063 DOI: CSTR: 32057.14.GFZXB.2025.7423.
Hu, J. Q.; Jiang, J. L.; Dai,S. X.; Liu, H.; Cui, L. X.; Song, H. X.; Jiang, H. Q.; Huang, M. H. Benzodithiophene-functionalized naphthalimide cathode interlayers for organic solar cell. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25063 DOI: CSTR: 32057.14.GFZXB.2025.7423.
高效且稳定的阴极界面层对于提高有机太阳能电池(OSCs)的性能起着至关重要的作用.萘甲酰亚胺分子因其化学结构简单且易于修饰而被用作OSCs阴极界面材料. 由此,本研究设计合成了一种基于苯并二噻吩的萘甲酰亚胺新型共轭小分子NBDT-M,即6'-(4
8-双(5-(2-乙基己基)噻吩-2-基)苯并[1
2-b:4
5-b']二噻吩-2
6-二基)双(2-(3-(1H-咪唑-1-基)丙基)-1H-苯并异喹啉-1
3(2H)-二酮). 与2
9-双(3-(1H-咪唑-1-基)丙基)蒽[2
1
9-def:6
5
10-d'e'f']二异喹啉-1
3
8
10(2H
9H)-四酮(PDI-M)相比,NBDT-M具有优异的醇溶液加工性能,高的最低未占有轨道(LUMO)能级,宽的光学带隙以及低的表面粗糙度. 最终,以NBDT-M为阴极界面层的OSCs获得了18.3%的能量转换效率,高于PDI-M的16.5%.
The efficient and stable cathode interface layer plays a vital role in improving the performances of organic solar cells (OSCs). It not only facilitates efficient charge extraction and transport but also suppresses non-radiative recombination at the interface. Recently
naphthalimide has been used as a cathode interface material of OSCs because of its simple molecular
structure and easy modification
which enables convenient synthesis and tunability of properties through chemical adjustments. Therefore
in this paper
a naphthalimide-based conjugated molecule incorporating a benzo[1
2-
b
:4
5-
b
'
]
dithiophene unit was designed and synthesized
namely
6'-(4
8-
bis
(5-(2-ethylhexyl)thiophen-2-yl)benzo[1
2-
b
:4
5-
b
'
]
dithiophene-2
6-diyl)
bis
(2-(3-(1H-imidazole-1-yl)propyl)-1H-benzo[de
]
isoquinoline-1
3(2H)-dione) (NBDT-M). The introduction of the benzo[1
2-
b
:4
5-
b
'
]
dithiophene unit was intended to optimize the electronic structure and molecular packing. NBDT-M exhibits excellent film-forming ability
which is crucial for device fabrication. It also shows high thermal stability
ensuring the device remains stable during operation. The up-shifted lowest unoccupied molecular orbital (LUMO) energy level is beneficial for better energy-level alignment with the active layer. The large optical energy band gap reduces optical absorption losses
and the low surface roughness minimizes interface defects. Finally
NBDT-M modified OSCs yield a power conversion efficiency (PCE) of up to 18.3%
significantly higher than that of the PDI-M based device (16.5%).
黄飞 , 薄志山 , 耿延候 , 王献红 , 王利祥 , 马於光 , 侯剑辉 , 胡文平 , 裴坚 , 董焕丽 , 王树 , 李振 , 帅志刚 , 李永舫 , 曹镛 . 光电高分子材料的研究进展 , 高分子学报 , 2019 , 50 ( 10 ), 988 - 1046 . doi: 10.11777/j.issn1000-3304.2019.19110 http://dx.doi.org/10.11777/j.issn1000-3304.2019.19110
Liu Y. H. ; Liu B. W. ; Ma C. Q. ; Huang F. ; Feng G. T. ; Chen H. Z. ; Hou J. H. ; Yan L. P. ; Wei Q. Y. ; Luo Q. ; Bao Q. Y. ; Ma W. ; Liu W. ; Li W. W. ; Wan X. J. ; Hu X. T. ; Han Y. C. ; Li Y. W. ; Zhou Y. H. ; Zou Y. P. ; Chen Y. W. ; Li Y. F. ; Chen Y. S. ; Tang Z. ; Hu Z. C. ; Zhang Z. G. ; Bo Z. S. Recent progress in organic solar cells (Part I material science) . Sci. China Chem. , 2022 , 65 ( 2 ), 224 - 268 . doi: 10.1007/s11426-021-1180-6 http://dx.doi.org/10.1007/s11426-021-1180-6
Li S. X. ; Li C. Z. ; Shi M. M. ; Chen H. Z. New phase for organic solar cell research: emergence of Y-series electron acceptors and their perspectives . ACS Energy Lett. , 2020 , 5 ( 5 ), 1554 - 1567 . doi: 10.1021/acsenergylett.0c00537 http://dx.doi.org/10.1021/acsenergylett.0c00537
Zhang G. C. ; Lin F. R. ; Qi F. ; Heumüller T. ; Distler A. ; Egelhaaf H. J. ; Li N. ; Chow P. C. Y. ; Brabec C. J. ; Jen A. K. ; Yip H. L. Renewed prospects for organic photovoltaics . Chem. Rev. , 2022 , 122 ( 18 ), 14180 - 14274 . doi: 10.1021/acs.chemrev.1c00955 http://dx.doi.org/10.1021/acs.chemrev.1c00955
Zhang G. Y. ; Zhao J. B. ; Chow P. C. Y. ; Jiang K. ; Zhang J. Q. ; Zhu Z. L. ; Zhang J. ; Huang F. ; Yan H. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells . Chem. Rev. , 2018 , 118 ( 7 ), 3447 - 3507 . doi: 10.1021/acs.chemrev.7b00535 http://dx.doi.org/10.1021/acs.chemrev.7b00535
Yan C. Q. ; Barlow S. ; Wang Z. H. ; Yan H. ; Jen A. K. Y. ; Marder S. R. ; Zhan X. W. Non-fullerene acceptors for organic solar cells . Nat. Rev. Mater. , 2018 , 3 , 18003 . doi: 10.1038/natrevmats.2018.3 http://dx.doi.org/10.1038/natrevmats.2018.3
Hou J. H. ; Inganäs O. ; Friend R. H. ; Gao F. Organic solar cells based on non-fullerene acceptors . Nat. Mater. , 2018 , 17 ( 2 ), 119 - 128 . doi: 10.1038/nmat5063 http://dx.doi.org/10.1038/nmat5063
Yao J. ; Chen Q. ; Zhang C. ; Zhang Z. G. ; Li Y. F. Perylene-diimide-based cathode interlayer materials for high performance organic solar cells . SusMat , 2022 , 2 ( 3 ), 243 - 263 . doi: 10.1002/sus2.80 http://dx.doi.org/10.1002/sus2.80
Wang L. ; Chen C. ; Gan Z. R. ; Cheng J. C. ; Sun Y. D. ; Zhou J. ; Xia W. Y. ; Liu D. ; Li W. ; Wang T. Diluted ternary heterojunctions to suppress charge recombination for organic solar cells with 21% efficiency . Adv. Mater. , 2025 , 37 ( 13 ), 2419923 . doi: 10.1002/adma.202419923 http://dx.doi.org/10.1002/adma.202419923
Tang H. R. ; Bai Y. Q. ; Zhao H. Y. ; Qin X. D. ; Hu Z. C. ; Zhou C. ; Huang F. ; Cao Y. Interface engineering for highly efficient organic solar cells . Adv. Mater. , 2024 , 36 ( 16 ), e 2212236 . doi: 10.1002/adma.202212236 http://dx.doi.org/10.1002/adma.202212236
Wu Z. H. ; Sun C. ; Dong S. ; Jiang X. F. ; Wu S. P. ; Wu H. B. ; Yip H. L. ; Huang F. ; Cao Y. N-type water/alcohol-soluble naphthalene diimide-based conjugated polymers for high-performance polymer solar cells . J. Am. Chem. Soc. , 2016 , 138 ( 6 ), 2004 - 2013 . doi: 10.1021/jacs.5b12664 http://dx.doi.org/10.1021/jacs.5b12664
Wang Z. T. ; Wang H. L. ; Yang L. ; Du M. Z. ; Gao L. ; Guo Q. ; Zhou E. J. Selenophene-fused perylene diimide-based cathode interlayer enables 19% efficiency binary organic solar cells via stimulative charge extraction . Angew. Chem. Int. Ed , 2024 , 63 ( 37 ), e 202404921 . doi: 10.1002/ange.202404921 http://dx.doi.org/10.1002/ange.202404921
Liu H. ; Jiang J. L. ; Dai S. X. ; Yu L. M. ; Zhang X. ; Hou X. B. ; Gao K. ; Jiang H. Q. ; Huang M. H. Propeller-shaped NI isomers of cathode interfacial material for efficient organic solar cells . Nano Res. , 2024 , 17 ( 3 ), 1564 - 1570 . doi: 10.1007/s12274-024-6482-z http://dx.doi.org/10.1007/s12274-024-6482-z
Yao J. ; Ding S. Y. ; Zhang R. ; Bai Y. ; Zhou Q. J. ; Meng L. ; Solano E. ; Steele J. A. ; Roeffaers M. B. J. ; Gao F. ; Zhang Z. G. ; Li Y. F. Fluorinated perylene-diimides: cathode interlayers facilitating carrier collection for high-performance organic solar cells . Adv. Mater. , 2022 , 34 ( 32 ), e 2203690 . doi: 10.1002/adma.202203690 http://dx.doi.org/10.1002/adma.202203690
Zhang M. ; Bai Y. ; Sun C. K. ; Xue L. W. ; Wang H. Q. ; Zhang Z. G. Perylene-diimide derived organic photovoltaic materials . Sci. China Chem. , 2022 , 65 ( 3 ), 462 - 485 . doi: 10.1007/s11426-021-1171-4 http://dx.doi.org/10.1007/s11426-021-1171-4
Liu M. ; Jiang Y. F. ; Liu D. ; Wang J. J. ; Ren Z. J. ; Russell T. P. ; Liu Y. Imidazole-functionalized imide interlayers for high performance organic solar cells . ACS Energy Lett. , 2021 , 6 ( 9 ), 3228 - 3235 . doi: 10.1021/acsenergylett.1c01482 http://dx.doi.org/10.1021/acsenergylett.1c01482
Zhao Y. ; Liu Y. ; Liu X. J. ; Kang X. ; Yu L. M. ; Dai S. X. ; Sun M. L. Aminonaphthalimide-based molecular cathode interlayers for As-cast organic solar cells . ChemSusChem , 2021 , 14 ( 21 ), 4783 - 4792 . doi: 10.1002/cssc.202101383 http://dx.doi.org/10.1002/cssc.202101383
Zhao Y. ; Liu X. J. ; Jing X. ; Liu S. N. ; Liu H. ; Liu Y. ; Yu L. M. ; Dai S. X. ; Sun M. L. Multi-armed imide-based molecules promote interfacial charge transfer for efficient organic solar cells . Chem. Eng. J. , 2022 , 441 , 135894 . doi: 10.1016/j.cej.2022.135894 http://dx.doi.org/10.1016/j.cej.2022.135894
Zhao Y. ; Liu X. J. ; Jing X. ; Liu Y. ; Liu H. ; Li S. N. ; Yu L. M. ; Dai S. X. ; Sun M. L. Achieving the low interfacial tension by balancing crystallization and film-forming ability of the cathode interlayer for organic solar cells . J. Colloid Interface Sci. , 2022 , 627 , 880 - 890 . doi: 10.1016/j.jcis.2022.07.096 http://dx.doi.org/10.1016/j.jcis.2022.07.096
Liu H. ; Liu S. N. ; Zhao Y. ; Jiang J. L. ; Feng X. R. ; Sun M. L. ; Yu L. M. ; Dai S. X. "A- π -a" type naphthalimide-based cathode interlayers for efficient organic solar cells . Dyes Pigm. , 2023 , 209 , 110911 . doi: 10.1016/j.dyepig.2022.110911 http://dx.doi.org/10.1016/j.dyepig.2022.110911
Liu W. X. ; Wen J. J. ; Yu H. C. ; Zhan X. ; Wang Y. X. ; Zhang L. ; Fan Y. H. ; You Z. H. ; Liu Y. Thienyltriazine triamides: thickness insensitive interlayer materials featuring fine-tuned optoelectronic and aggregation characters for efficient organic solar cells . Angew. Chem. , 2025 , 137 ( 1 ), e 202413135 . doi: 10.1002/anie.202413135 http://dx.doi.org/10.1002/anie.202413135
Liu S. N. ; Dai S. X. ; Huang M. H. The impact of ester groups on 1 , 8 -naphthalimide electron transport material in organic solar cells . Chin. J. Struct. Chem., 2024, 43 ( 6 ), 100277 . doi: 10.1016/j.cjsc.2024.100277 http://dx.doi.org/10.1016/j.cjsc.2024.100277
Dai S. X. ; Jiang J. L. ; Yu L. M. ; Cui L. X. ; Zhang X. ; Zhang C. H. ; Gao K. ; Jiang H. Q. ; Huang M. H. Heteroaromatic ring-modified naphthalimide interlayer materials for efficient polymer solar cells . J. Mater. Chem. A , 2025 , 13 ( 14 ), 10088 - 10096 . doi: 10.1039/d4ta08002e http://dx.doi.org/10.1039/d4ta08002e
Lu L. Y. ; Yu L. P. Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it . Adv. Mater. , 2014 , 26 ( 26 ), 4413 - 4430 . doi: 10.1002/adma.201400384 http://dx.doi.org/10.1002/adma.201400384
Zhang M. J. ; Guo X. ; Ma W. ; Ade H. ; Hou J. H. A polythiophene derivative with superior properties for practical application in polymer solar cells . Adv. Mater. , 2014 , 26 ( 33 ), 5880 - 5885 . doi: 10.1002/adma.201401494 http://dx.doi.org/10.1002/adma.201401494
Liu Q. S. ; Jiang Y. F. ; Jin K. ; Qin J. Q. ; Xu J. G. ; Li W. T. ; Xiong J. ; Liu J. F. ; Xiao Z. ; Sun K. ; Yang S. F. ; Zhang X. T. ; Ding L. M. 18% Efficiency organic solar cells . Sci. Bull. , 2020 , 65 ( 4 ), 272 - 275 . doi: 10.1016/j.scib.2020.01.001 http://dx.doi.org/10.1016/j.scib.2020.01.001
Huo L. J. ; Liu T. ; Fan B. B. ; Zhao Z. Y. ; Sun X. B. ; Wei D. H. ; Yu M. M. ; Liu Y. Q. ; Sun Y. M. Organic solar cells based on a 2 D benzo [ 1 , 2 -b:4, 5 -b' ] difuran-conjugated polymer with high-power conversion efficiency. Adv. Mater., 2015, 27 ( 43 ), 6969 - 6975 . doi: 10.1002/adma.201503023 http://dx.doi.org/10.1002/adma.201503023
Günes S. ; Neugebauer H. ; Sariciftci N. S. Conjugated polymer-based organic solar cells . Chem. Rev. , 2007 , 107 ( 4 ), 1324 - 1338 . doi: 10.1021/cr050149z http://dx.doi.org/10.1021/cr050149z
Price S. C. ; Stuart A. C. ; Yang L. Q. ; Zhou H. X. ; You W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells . J. Am. Chem. Soc. , 2011 , 133 ( 12 ), 4625 - 4631 . doi: 10.1021/ja1112595 http://dx.doi.org/10.1021/ja1112595
Murgatroyd P. N. Theory of space-charge-limited current enhanced by Frenkel effect . J. Phys. D Appl. Phys. , 1970 , 3 ( 2 ), 151 - 156 . doi: 10.1088/0022-3727/3/2/308 http://dx.doi.org/10.1088/0022-3727/3/2/308
Schilinsky P. ; Waldauf C. ; Brabec C. J. Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors . Appl. Phys. Lett. , 2002 , 81 ( 20 ), 3885 - 3887 . doi: 10.1063/1.1521244 http://dx.doi.org/10.1063/1.1521244
Koster L. J. A. ; Mihailetchi V. D. ; Ramaker R. ; Blom P. W. M. Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells . Appl. Phys. Lett. , 2005 , 86 ( 12 ), 123509 . doi: 10.1063/1.1889240 http://dx.doi.org/10.1063/1.1889240
0
Views
18
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution