浏览全部资源
扫码关注微信
大连理工大学高分子材料系 大连 116024
Jin-yan Wang, E-mail: wangjinyan@dlut.edu.cn
Received:14 March 2025,
Accepted:11 May 2025,
Published Online:04 June 2025,
移动端阅览
王晴, 李战胜, 丁子淳, 焦健健, 宗立率, 王锦艳, 蹇锡高. 可自修复生物基聚芳醚酮的制备与性能研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25073
Wang, Q.; Li, Z. S.; Ding, Z. C.; Jiao, J. J.; Zong, L. S.; Wang, J. Y.; Jian, X. G. Preparation and properties of self-healing bio-based polyaryletherketones. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25073
王晴, 李战胜, 丁子淳, 焦健健, 宗立率, 王锦艳, 蹇锡高. 可自修复生物基聚芳醚酮的制备与性能研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25073 DOI: CSTR: 32057.14.GFZXB.2025.7416.
Wang, Q.; Li, Z. S.; Ding, Z. C.; Jiao, J. J.; Zong, L. S.; Wang, J. Y.; Jian, X. G. Preparation and properties of self-healing bio-based polyaryletherketones. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25073 DOI: CSTR: 32057.14.GFZXB.2025.7416.
生物基高分子材料具有环境友好、原料可再生以及低碳排放等优点,符合可持续发展的目标. 本研究通过分子结构设计了一种主链含动态席夫碱键的生物基聚芳醚酮树脂(PVFEKKs),赋予其自修复功能. 以香草醛与4
4'-二氨基二苯醚合成双席夫碱单体(VODA),与2
5-二(4-氟苯甲酰基)呋喃(BFBF)通过亲核取代反应合成了主链含双席夫碱结构的PVFEKKs树脂. IR和NMR证明了树脂结构与预期设计一致;通过测试表明,PVFEKKs具有良好的机械性能,
T
g
最高可达160 ℃,800 ℃残炭率为66.4%,高残炭率得益于席夫碱在高温下形成的炭层;双席夫碱动态结构的引入赋予材料自修复功能,刚性结构在温和条件下进行修复后,力学性能恢复超过90%,解决了材料强度与自修复之间的矛盾. 该工作为开发可持续、耐高温、可自修复的高性能工程塑料提供了新策略.
Bio-based polymeric materials have the advantages of environmentally friendly
renewable raw materials and low carbon emission
which are in line with the goal of sustainable development. In this study
bio-based poly(aryl ether ketone) resins (PVFEKKs) containing dynamic Schiff base bonds in the main chain were designed by molecular structure
endowing it with self-healing function. Vanillin and 4
4'-diaminodiphenyl ether were used to synthesize a bis-Schiff base monomer (VODA)
and the PVFEKKs resin containing a bis-Schiff base structure in the main chain was synthesized
via
nucleophilic substitution reaction with 2
5-bis(4-fluorobenzoyl)furan (BFBF). IR and NMR proved that the structure of the resin was consistent with the expected design; DMA and mechanical tests showed that the PVFEKKs had good mechanical properties; DSC and TGA tests showed that the
T
g
of the PVFEKKs resin could reach up to 160 ℃
and the residual carbon rate at 800 ℃ was 66.4%
which was attributed to the formation of a carbon layer by the Schiff bases at elevated temperatures; the introduction of the dynamic structure of the bis-Schiff bases endowed the material with a self-healing function
and the rigid structure could be utilized in a mild condition for the self-healing function of the material. The introduction of the dynamic structure of the bis-Schiff base gives the material a self-healing function
and the rigid structure recovers more than 90% of its mechanical properties after repairing under mild conditions
which solves the contradiction between material strength and self-healing. This work provides a new strategy for the development of sustainable
high-temperature resistant and self-healing high-performance engineering plastics.
Cywar R. M. ; Rorrer N. A. ; Hoyt C. B. ; Beckham G. T. ; Chen E. Y. X. Bio-based polymers with performance-advantaged properties . Nat. Rev. Mater. , 2021 , 7 ( 2 ), 83 - 103 . doi: 10.1038/s41578-021-00363-3 http://dx.doi.org/10.1038/s41578-021-00363-3
Zhang Q. N. ; Song M. Z. ; Xu Y. Y. ; Wang W. C. ; Wang Z. ; Zhang L. Q. Bio-based polyesters: recent progress and future prospects . Prog. Polym. Sci. , 2021 , 120 , 101430 . doi: 10.1016/j.progpolymsci.2021.101430 http://dx.doi.org/10.1016/j.progpolymsci.2021.101430
Suriano R. ; Gonzalez M. N. G. ; Turri S. Environmental profile and technological validation of new high-tg unsaturated polyesters from fully bio-based monomers and reactive diluents . J. Polym. Environ. , 2021 , 29 ( 4 ), 1122 - 1133 . doi: 10.1007/s10924-020-01928-z http://dx.doi.org/10.1007/s10924-020-01928-z
Joseph T. M. ; Kallingal A. ; Suresh A. M. ; Mahapatra D. K. ; Hasanin M. S. ; Haponiuk J. ; Thomas S. 3D printing of polylactic acid: recent advances and opportunities . Int. J. Adv. Manuf. Technol. , 2023 , 125 ( 3-4 ), 1015 - 1035 . doi: 10.1007/s00170-022-10795-y http://dx.doi.org/10.1007/s00170-022-10795-y
Zhao X. P. ; Hu H. ; Wang X. ; Yu X. L. ; Zhou W. Y. ; Peng S. X. Super tough poly(lactic acid) blends: a comprehensive review . RSC Adv. , 2020 , 10 ( 22 ), 13316 - 13368 . doi: 10.1039/d0ra01801e http://dx.doi.org/10.1039/d0ra01801e
Zhang Y. ; Liu X. M. ; Wan M. T. ; Zhu Y. J. ; Zhang K. From renewable biomass to bio-based epoxy monomers and bio-based epoxy curing agents: synthesis and performance . Polym. Degrad. Stabil. , 2024 , 229 , 110988 . doi: 10.1016/j.polymdegradstab.2024.110988 http://dx.doi.org/10.1016/j.polymdegradstab.2024.110988
Chen C. H. ; Tung S. H. ; Jeng R. J. ; Abu-Omar M. M. ; Lin C. H. A facile strategy to achieve fully bio-based epoxy thermosets from eugenol . Green Chem. , 2019 , 21 ( 16 ), 4475 - 4488 . doi: 10.1039/c9gc01184f http://dx.doi.org/10.1039/c9gc01184f
Gong C. H. ; Liu Z. ; Tao Z. X. ; Xu A. D. ; Xie H. J. ; Fang Q. ; Qiu Z. M. ; Yan Y. R. High-performance polyimides derived from biomass: design, synthesis, and properties . ACS Sustain. Chem. Eng. , 2023 , 11 ( 12 ), 4789 - 4799 . doi: 10.1021/acssuschemeng.2c07367 http://dx.doi.org/10.1021/acssuschemeng.2c07367
Chatterjee D. ; Jadhav U. A. ; Javaregowda B. H. ; Dongale T. D. ; Patil P. S. ; Wadgaonkar P. P. Partially bio-based triarylamine-containing polyimides: synthesis, characterization and evaluation in non-volatile memory device applications . Eur. Polym. J. , 2021 , 147 , 110327 . doi: 10.1016/j.eurpolymj.2021.110327 http://dx.doi.org/10.1016/j.eurpolymj.2021.110327
Bao F. ; Song Y. Y. ; Liu Q. ; Song C. ; Liu C. ; Wang J. Y. ; Jian X. G. ; Xiao J. Q. Partial bio-based poly(aryl ether ketone) derived from 2 , 5 -furandicarboxylic acid with enhanced processability . Polym. Degrad. Stabil ., 2019, 161 , 309 - 318 . doi: 10.1016/j.polymdegradstab.2018.12.008 http://dx.doi.org/10.1016/j.polymdegradstab.2018.12.008
Zhang R. ; Bao F. ; Weng Z. H. ; Zong L. S. ; Wang J. Y. ; Jian X. G. A bio-based N-heterocyclic poly(aryl ether ketone) with a high biomass content and superior properties prepared from two derivatives of guaiacol and 2,5-furandicarboxylic acid . Polym. Degrad. Stabil. , 2022 , 195 , 109792 . doi: 10.1016/j.polymdegradstab.2021.109792 http://dx.doi.org/10.1016/j.polymdegradstab.2021.109792
Pang Y. ; Wang J. ; Jian X. Synthesis and properties of furan heterocyclic poly(aryl ether ketone)s . Acta Polymerica Sinica. , 2024 , 55 ( 12 ), 1686 - 1695 .
Xu J. P. ; Liu Y. ; Hsu S. H. Hydrogels based on schiff base linkages for biomedical applications . Molecules , 2019 , 24 ( 16 ), 3005 . doi: 10.3390/molecules24163005 http://dx.doi.org/10.3390/molecules24163005
Li S. Z. ; Pei M. J. ; Wan T. T. ; Yang H. J. ; Gu S. J. ; Tao Y. Z. ; Liu X. ; Zhou Y. S. ; Xu W. L. ; Xiao P. Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials . Carbohydr. Polym. , 2020 , 250 , 116922 . doi: 10.1016/j.carbpol.2020.116922 http://dx.doi.org/10.1016/j.carbpol.2020.116922
Yuan Y. ; Shen S. H. ; Fan D. D. A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-healing property and enhanced adhesion . Biomaterials , 2021 , 276 , 120838 . doi: 10.1016/j.biomaterials.2021.120838 http://dx.doi.org/10.1016/j.biomaterials.2021.120838
Zhao X. ; Huang Y. ; Li Z. L. ; Chen J. Y. ; Luo J. L. ; Bai L. ; Huang H. Y. ; Cao E. T. ; Yin Z. H. ; Han Y. ; Guo B. L. Injectable self-expanding/self-propelling hydrogel adhesive with procoagulant activity and rapid gelation for lethal massive hemorrhage management . Adv. Mater. , 2024 , 36 ( 15 ), 2308701 . doi: 10.1002/adma.202470111 http://dx.doi.org/10.1002/adma.202470111
Chen H. L. ; Cheng J. W. ; Ran L. X. ; Yu K. ; Lu B. T. ; Lan G. Q. ; Dai F. Y. ; Lu F. An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing . Carbohydr. Polym. , 2018 , 201 , 522 - 531 . doi: 10.1016/j.carbpol.2018.08.090 http://dx.doi.org/10.1016/j.carbpol.2018.08.090
Wan B. Q. ; Zheng M. S. ; Yang X. ; Dong X. D. ; Li Y. C. ; Mai Y. W. ; Chen G. ; Zha J. W. Recyclability and self-healing of dynamic cross-linked polyimide with mechanical/electrical damage . Energy Environ. Mater. , 2023 , 6 ( 1 ), e 12427 . doi: 10.1002/eem2.12427 http://dx.doi.org/10.1002/eem2.12427
Ma J. P. ; Li G. X. ; Hua X. N. ; Liu N. ; Liu Z. ; Zhang F. ; Yu L. L. ; Chen X. ; Shang L. ; Ao Y. H. Biodegradable epoxy resin from vanillin with excellent flame-retardant and outstanding mechanical properties . Polym. Degrad. Stabil. , 2022 , 201 , 109989 . doi: 10.1016/j.polymdegradstab.2022.109989 http://dx.doi.org/10.1016/j.polymdegradstab.2022.109989
Zhang R. ; Zong L. S. ; Wang J. Y. ; Jian X. G. Fully bio-based furyl-functionalized bisphenols and bio-based cross-linking poly(aryl ether ketone)s with high biomass content, thermo-reversibility, excellent processing and mechanical properties . Polym. Degrad. Stabil. , 2022 , 200 , 109961 . doi: 10.1016/j.polymdegradstab.2022.109961 http://dx.doi.org/10.1016/j.polymdegradstab.2022.109961
Zheng N. ; Xu Y. ; Zhao Q. ; Xie T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing . Chem. Rev. , 2021 , 121 ( 3 ), 1716 - 1745 . doi: 10.1021/acs.chemrev.0c00938 http://dx.doi.org/10.1021/acs.chemrev.0c00938
Zhang X. ; Wu J. Z. ; Qin Z. L. ; Qian L. J. ; Liu L. C. ; Zhang W. C. ; Yang R. J. High-performance biobased vinyl ester resin with schiff base derived from vanillin . ACS Appl. Polym. Mater. , 2022 , 4 ( 4 ), 2604 - 2613 . doi: 10.1021/acsapm.1c01910 http://dx.doi.org/10.1021/acsapm.1c01910
Xie W. Q. ; Huang S. W. ; Tang D. L. ; Liu S. M. ; Zhao J. Q. Biomass-derived Schiff base compound enabled fire-safe epoxy thermoset with excellent mechanical properties and high glass transition temperature . Chem. Eng. J. , 2020 , 394 , 123667 . doi: 10.1016/j.cej.2019.123667 http://dx.doi.org/10.1016/j.cej.2019.123667
Yang A. H. ; Deng C. ; Chen H. ; Wei Y. X. ; Wang Y. Z. A novel Schiff-base polyphosphate ester: highly-efficient flame retardant for polyurethane elastomer . Polym. Degrad. Stabil. , 2017 , 144 , 70 - 82 . doi: 10.1016/j.polymdegradstab.2017.08.007 http://dx.doi.org/10.1016/j.polymdegradstab.2017.08.007
Kim Y. N. ; Lee J. ; Kim Y. O. ; Kim J. ; Han H. ; Jung Y. C. Colorless polyimides with excellent optical transparency and self-healing properties based on multi-exchange dynamic network . Appl. Mater. Today , 2021 , 25 , 101226 . doi: 10.1016/j.apmt.2021.101226 http://dx.doi.org/10.1016/j.apmt.2021.101226
Zang W. P. ; Liu X. Y. ; Li J. J. ; Jiang Y. J. ; Yu B. ; Zou H. ; Ning N. Y. ; Tian M. ; Zhang L. Q. Conductive, self-healing and recyclable electrodes for dielectric elastomer generator with high energy density . Chem. Eng. J. , 2022 , 429 , 132258 . doi: 10.1016/j.cej.2021.132258 http://dx.doi.org/10.1016/j.cej.2021.132258
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution