浏览全部资源
扫码关注微信
天津大学材料科学与工程学院 天津 300072
Meng-meng Qin, E-mail: qmm@tju.edu.cn
Received:02 April 2025,
Accepted:23 May 2025,
Published Online:19 June 2025,
移动端阅览
赵熙博, 俞慧涛, 秦盟盟, 封伟. 聚硅氧烷离子凝胶基软弹性界面导热材料. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25087
Zhao, X. B.; Yu, H. T.; Qin, M. M.; Feng, W. Polysiloxane ionic gel-based soft elastic thermally conductive interfacial materials. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25087
赵熙博, 俞慧涛, 秦盟盟, 封伟. 聚硅氧烷离子凝胶基软弹性界面导热材料. 高分子学报, doi: 10.11777/j.issn1000-3304.2025.25087 DOI: CSTR: 32057.14.GFZXB.2025.7422.
Zhao, X. B.; Yu, H. T.; Qin, M. M.; Feng, W. Polysiloxane ionic gel-based soft elastic thermally conductive interfacial materials. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2025.25087 DOI: CSTR: 32057.14.GFZXB.2025.7422.
新型热界面材料(TIMs)需要兼具软弹性与高导热性,以实现复杂界面的高效连接与热传导. 极端高低温使用工况又对TIMs提出了新的性能要求. 能否在低温下使TIMs保持良好的软弹性和结构稳定性,是决定其热疏导性能的关键因素. 在聚硅氧烷主链接枝侧链形成刷型聚合物来调控其柔性与低温结晶现象. 部分接枝末端羟基咪唑离子液体,制备出富含氢键且耐低温的聚硅氧烷离子液体(PIL),并进一步接枝丙烯酸己酯,制备出聚硅氧烷离子凝胶(PIL-GEL). PIL-GEL材料在-80 ℃、50%压缩率的条件下,压缩强度为2.75 kPa,在-40 ℃下30 min的拉伸自修复效率达到42.2%. 利用双辊固化集成装置,成功实现了六方氮化硼(h-BN)/聚合物薄膜的连续制备. 利用堆叠、压缩和垂直切割技术,制备出基于垂直取向的PIL-GEL@h-BN的TIMs,其在填料质量分数为30%的条件下,具有高面外热导率(5.851 W·m
-1
·K
-1
)、低压缩模量(9.8 kPa)和接触热阻(63.26 K·mm
2
·W
-1
). 在50%的动态压缩条件下,界面温度变化仅为0.64 ℃,展现出出色的界面热管理能力.
Novel thermal interface materials (TIMs) have to possess soft elasticity and high thermal conductivity to realize efficient interfacial connections and thermal evacuation. Extremely high and low temperature conditions also put new demands on TIMs. How to maintain the excellent soft elasticity and structural stability of TIMs at low temperature is the key to determining their thermal c
onductivity properties. The formation of brush polymers within the side chains of polysiloxane main link branches has been demonstrated to modulate flexibility and low-temperature crystallization phenomena. Hydrogen-bonded and low-temperature resistant polysiloxane ionic liquids (PIL) were prepared by grafting terminal hydroxyimidazoles ionic liquids partly. Polysiloxane ionic gels (PIL-GEL) were prepared by further grafting of hexyl acrylate. The PIL-GEL has a low elastic modulus
and the compressive strength of 50% compression ratio is 2.75 kPa at -80 ℃
and the self-healing efficiency at -40 ℃ for 30 min reaches 42.2%. Continuous preparation of hexagonal boron nitride (h-BN)/polymer thin films was successfully achieved using a dual-roll curing integrated device. And using stacking
cold pressing
and vertical cutting techniques
PIL-GEL@h-BN TIMs with excellent properties were prepared with high through-plane thermal conductivity (5.851 W·m
-1
·K
-1
) at low filler content (30 wt%)
low compression modulus (9.8 kPa)
and contact thermal resistance (63.26 K·mm
2
·W
-1
). Under 50% dynamic compression
the interfacial temperature change is only 0.64 ℃
providing excellent interfacial thermal management.
Rohachev V. A. ; Terekh O. M. ; Baranyuk A. V. ; Nikolaenko Y. E. ; Zhukova Y. V. ; Rudenko A. I. Heataerodynamic efficiency of small size heat transfer surfaces for cooling thermally loaded electronic components . Therm. Sci. Eng. Prog. , 2020 , 20 , 100726 . doi: 10.1016/j.tsep.2020.100726 http://dx.doi.org/10.1016/j.tsep.2020.100726
Yang D. G. ; Wan F. F. ; Shou Z. Y. ; van Driel W. D. ; Scholten H. ; Goumans L. ; Faria R. Effect of high temperature aging on reliability of automotive electronics . Microelectron. Reliab. , 2011 , 51 ( 9-11 ), 1938 - 1942 . doi: 10.1016/j.microrel.2011.07.075 http://dx.doi.org/10.1016/j.microrel.2011.07.075
Lewis J. S. ; Perrier T. ; Barani Z. ; Kargar F. ; Balandin A. A. Thermal interface materials with graphene fillers: review of the state of the art and outlook for future applications . Nanotechnology , 2021 , 32 ( 14 ), 142003 . doi: 10.1088/1361-6528/abc0c6 http://dx.doi.org/10.1088/1361-6528/abc0c6
Xu S. C. ; Zhang J. Vertically aligned graphene for thermal interface materials . Small Struct. , 2020 , 1 ( 3 ), 2000034 . doi: 10.1002/sstr.202000034 http://dx.doi.org/10.1002/sstr.202000034
Xing W. K. ; Xu Y. ; Song C. Y. ; Deng T. Recent advances in thermal interface materials for thermal management of high-power electronics . Nanomaterials , 2022 , 12 ( 19 ), 3365 . doi: 10.3390/nano12193365 http://dx.doi.org/10.3390/nano12193365
Cui Y. ; Qin Z. H. ; Wu H. ; Li M. ; Hu Y. J. Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management . Nat. Commun. , 2021 , 12 ( 1 ), 1284 . doi: 10.1038/s41467-021-21531-7 http://dx.doi.org/10.1038/s41467-021-21531-7
Wu K. ; Dou Z. L. ; Deng S. B. ; Wu D. ; Zhang B. ; Yang H. B. ; Li R. L. ; Lei C. X. ; Zhang Y. Z. ; Fu Q. ; Yu G. H. Mechanochemistry-mediated colloidal liquid metals for electronic device cooling at kilowatt levels . Nat. Nanotechnol. , 2025 , 20 ( 1 ), 104 - 111 . doi: 10.1038/s41565-024-01793-0 http://dx.doi.org/10.1038/s41565-024-01793-0
Guo Y. Q. ; Zhang L. ; Ruan K. P. ; Mu Y. ; He M. K. ; Gu J. W. Enhancing hydrolysis resistance and thermal conductivity of aluminum nitride/polysiloxane composites via block copolymer-modification . Polymer , 2025 , 323 , 128189 . doi: 10.1016/j.polymer.2025.128189 http://dx.doi.org/10.1016/j.polymer.2025.128189
Zhang H. ; He Q. X. ; Yu H. T. ; Qin M. M. ; Feng Y. Y. ; Feng W. A bioinspired polymer-based composite displaying both strong adhesion and anisotropic thermal conductivity . Adv. Funct. Mater. , 2023 , 33 ( 18 ), 2211985 . doi: 10.1002/adfm.202211985 http://dx.doi.org/10.1002/adfm.202211985
He Q. X. ; Qin M. M. ; Zhang H. ; Yue J. W. ; Peng L. Q. ; Liu G. J. ; Feng Y. Y. ; Feng W. Patterned liquid metal embedded in brush-shaped polymers for dynamic thermal management . Mater. Horiz. , 2024 , 11 ( 2 ), 531 - 544 . doi: 10.1039/d3mh01498c http://dx.doi.org/10.1039/d3mh01498c
Guo C. ; Li Y. H. ; Xu J. H. ; Zhang Q. ; Wu K. ; Fu Q. A thermally conductive interface material with tremendous and reversible surface adhesion promises durable cross-interface heat conduction . Mater. Horiz. , 2022 , 9 ( 6 ), 1690 - 1699 . doi: 10.1039/d2mh00276k http://dx.doi.org/10.1039/d2mh00276k
Zhang H. ; He Q. X. ; Yu H. T. ; Qin M. M. ; Feng Y. Y. ; Feng W. Mussel-inspired polymer-based composites for efficient thermal management in dry and underwater environments . ACS Nano , 2024 , 18 ( 32 ), 21399 - 21410 . doi: 10.1021/acsnano.4c05894 http://dx.doi.org/10.1021/acsnano.4c05894
Zhan K. ; Chen Y. C. ; Xiong Z. Y. ; Zhang Y. L. ; Ding S. Y. ; Zhen F. Z. ; Liu Z. S. ; Wei Q. ; Liu M. S. ; Sun B. ; Cheng H. M. ; Qiu L. Low thermal contact resistance boron nitride nanosheets composites enabled by interfacial arc-like phonon bridge . Nat. Commun. , 2024 , 15 ( 1 ), 2905 . doi: 10.1038/s41467-024-47147-1 http://dx.doi.org/10.1038/s41467-024-47147-1
Wang S. S. ; Feng D. Y. ; Zhang Z. M. ; Liu X. ; Ruan K. P. ; Guo Y. Q. ; Gu J. W. Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@f-CNTs networks via self-sacrificing template method . Chinese J. Polym. Sci. , 2024 , 42 ( 7 ), 897 - 906 . doi: 10.1007/s10118-024-3098-4 http://dx.doi.org/10.1007/s10118-024-3098-4
Zhang H. T. ; Guo Y. Q. ; Zhao Y. Z. ; Zhu Q. Y. ; He M. K. ; Guo H. ; Shi X. T. ; Ruan K. P. ; Kong J. ; Gu J. W. Liquid crystal-engineered polydimethylsiloxane: enhancing intrinsic thermal conductivity through high grafting density of mesogens . Angew. Chem. Int. Ed. , 2025 , 64 ( 14 ), e 202500173 . doi: 10.1002/anie.202500173 http://dx.doi.org/10.1002/anie.202500173
Wu X. P. ; Zhao J. S. ; Rao X. ; Chung D. D. L. Carbon fiber epoxy-matrix composites with hydrothermal-carbon-coated halloysite nanotube filler exhibiting enhanced strength and thermal conductivity . Polym. Compos. , 2020 , 41 ( 7 ), 2687 - 2703 . doi: 10.1002/pc.25567 http://dx.doi.org/10.1002/pc.25567
Wang H. R. ; Zhang H. ; Peng L. Q. ; Yu H. T. ; Qin M. M. ; Feng Y. Y. ; Feng W. A versatile multilayer interwoven order-structured carbon-based building block for efficient heat dissipation . Adv. Compos. Hybrid Mater. , 2024 , 7 ( 3 ), 101 . doi: 10.1007/s42114-024-00912-8 http://dx.doi.org/10.1007/s42114-024-00912-8
Cui Y. ; Li M. ; Hu Y. J. Emerging interface materials for electronics thermal management: experiments, modeling, and new opportunities . J. Mater. Chem. C , 2020 , 8 ( 31 ), 10568 - 10586 . doi: 10.1039/c9tc05415d http://dx.doi.org/10.1039/c9tc05415d
Zhang B. ; Dou Z. L. ; Zhang Y. Z. ; Fu Q. ; Wu K. Exploring trade-offs in thermal interface materials: the impact of polymer-filler interfaces on thermal conductivity and thixotropy . Chinese J. Polym. Sci. , 2024 , 42 ( 7 ), 916 - 925 . doi : 10.1007/s10118-024-3101-0 http://dx.doi.org/10.1007/s10118-024-3101-0
Yao T. K. ; Xin G. Q. ; Scott S. M. ; Gong B. W. ; Lian J. Thermally-conductive and mechanically-robust graphene nanoplatelet reinforced UO 2 composite nuclear fuels . Sci. Rep. , 2018 , 8 , 2987 . doi: 10.1038/s41598-018-21034-4 http://dx.doi.org/10.1038/s41598-018-21034-4
Yu H. T. ; Feng Y. Y. ; Chen C. ; Zhang Z. X. ; Cai Y. ; Qin M. M. ; Feng W. Thermally conductive, self-healing, and elastic Polyimide@Vertically aligned carbon nanotubes composite as smart thermal interface material . Carbon , 2021 , 179 , 348 - 357 . doi: 10.1016/j.carbon.2021.04.055 http://dx.doi.org/10.1016/j.carbon.2021.04.055
Qin M. M. ; Xu Y. X. ; Cao R. ; Feng W. ; Chen L. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge . Adv. Funct. Mater. , 2018 , 28 ( 45 ), 1805053 . doi: 10.1002/adfm.201870324 http://dx.doi.org/10.1002/adfm.201870324
Yu H. T. ; Guo P. L. ; Qin M. M. ; Han G. Y. ; Chen L. ; Feng Y. Y. ; Feng W. Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure . Compos. Sci. Technol. , 2022 , 222 , 109406 . doi: 10.1016/j.compscitech.2022.109406 http://dx.doi.org/10.1016/j.compscitech.2022.109406
Yu H. T. ; Feng Y. Y. ; Gao L. ; Chen C. ; Zhang Z. X. ; Feng W. Self-healing high strength and thermal conductivity of 3D graphene/PDMS composites by the optimization of multiple molecular interactions . Macromolecules , 2020 , 53 ( 16 ), 7161 - 7170 . doi: 10.1021/acs.macromol.9b02544 http://dx.doi.org/10.1021/acs.macromol.9b02544
Wang B. W. ; Zhang H. ; He Q. X. ; Yu H. T. ; Qin M. M. ; Feng W. Corrugated graphene paper reinforced silicone resin composite for efficient interface thermal management . Chinese J. Polym. Sci. , 2024 , 42 ( 7 ), 1002 - 1014 . doi: 10.1007/s10118-024-3159-8 http://dx.doi.org/10.1007/s10118-024-3159-8
He M. K. ; Zhong X. ; Lu X. H. ; Hu J. W. ; Ruan K. P. ; Guo H. ; Zhang Y. L. ; Guo Y. Q. ; Gu J. W. Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by hydrangea-like CoNi@BN heterostructure fillers . Adv. Mater. , 2024 , 36 ( 48 ), 2410186 . doi: 10.1002/adma.202410186 http://dx.doi.org/10.1002/adma.202410186
Han Y. X. ; Ruan K. P. ; Gu J. W. Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver Nanowires@Boron nitride nanosheets and aramid nanofibers . Angew. Chem. Int. Ed. , 2023 , 62 ( 5 ), e 202216093 . doi: 10.1002/anie.202216093 http://dx.doi.org/10.1002/anie.202216093
Yin Z. H. ; Guo J. H. ; Jiang X. H. Significantly improved thermal conductivity of silicone rubber and aligned boron nitride composites by a novel roll-cutting processing method . Compos. Sci. Technol. , 2021 , 209 , 108794 . doi: 10.1016/j.compscitech.2021.108794 http://dx.doi.org/10.1016/j.compscitech.2021.108794
Yang R. J. ; Wang Y. D. ; Zhang Z. B. ; Xu K. ; Li L. H. ; Cao Y. ; Li M. H. ; Zhang J. X. ; Qin Y. ; Zhu B. D. ; Guo Y. Y. ; Zhou Y. W. ; Cai T. ; Lin C. T. ; Nishimura K. ; Xue C. ; Jiang N. ; Yu J. H. Highly oriented BN-based TIMs with high through-plane thermal conductivity and low compression modulus . Mater. Horiz. , 2024 , 11 ( 17 ), 4064 - 4074 . doi: 10.1039/d4mh00626g http://dx.doi.org/10.1039/d4mh00626g
Xu Y. F. ; Kraemer D. ; Song B. ; Jiang Z. ; Zhou J. W. ; Loomis J. ; Wang J. J. ; Li M. D. ; Ghasemi H. ; Huang X. P. ; Li X. B. ; Chen G. Nanostructured polymer films with metal-like thermal conductivity . Nat. Commun. , 2019 , 10 ( 1 ), 1771 . doi: 10.1038/s41467-019-09697-7 http://dx.doi.org/10.1038/s41467-019-09697-7
Zhang Q. ; Lv Y. W. ; Wang Y. F. ; Yu S. X. ; Li C. X. ; Ma R. J. ; Chen Y. S. Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving . Nat. Commun. , 2022 , 13 ( 1 ), 4874 . doi: 10.1038/s41467-022-32528-1 http://dx.doi.org/10.1038/s41467-022-32528-1
Proud S. R. ; Bachmeier S. Record-low cloud temperatures associated with a tropical deep convective event . Geophys. Res. Lett. , 2021 , 48 ( 6 ), e 2020 GL 092261 . doi: 10.1029/2020gl092261 http://dx.doi.org/10.1029/2020gl092261
Zlatanic A. ; Radojcic D. ; Wan X. M. ; Messman J. M. ; Dvornic P. R. Monitoring of the course of the silanolate-initiated polymerization of cyclic siloxanes. a mechanism for the copolymerization of dimethyl and diphenyl monomers . Macromolecules , 2018 , 51 ( 3 ), 895 - 905 . doi: 10.1021/acs.macromol.7b02658 http://dx.doi.org/10.1021/acs.macromol.7b02658
Mark J. E. Some interesting things about polysiloxanes . Acc. Chem. Res. , 2004 , 37 ( 12 ), 946 - 953 . doi: 10.1021/ar030279z http://dx.doi.org/10.1021/ar030279z
Hou G. Y. ; Zhou X. L. ; Li S. ; Jiang R. F. ; Zhang Z. Y. ; Dong M. J. ; Liu J. ; Lu Y. L. ; Wang W. C. ; Zhang L. Q. ; Wang S. H. Exploiting synergistic experimental and computational approaches to design and fabricate high-performance elastomer . Macromolecules , 2020 , 53 ( 15 ), 6452 - 6460 . doi: 10.1021/acs.macromol.0c01285 http://dx.doi.org/10.1021/acs.macromol.0c01285
Ma Q. ; Liao S. L. ; Ma Y. C. ; Chu Y. J. ; Wang Y. P. An ultra-low-temperature elastomer with excellent mechanical performance and solvent resistance . Adv. Mater. , 2021 , 33 ( 36 ), 2102096 . doi: 10.1002/adma.202102096 http://dx.doi.org/10.1002/adma.202102096
Shi J. F. ; Zhao N. ; Xia S. ; Liu S. F. ; Li Z. B. Phosphazene superbase catalyzed ring-opening polymerization of cyclotetrasiloxane toward copolysiloxanes with high diphenyl siloxane content . Polym. Chem. , 2019 , 10 ( 17 ), 2126 - 2133 . doi: 10.1039/c9py00247b http://dx.doi.org/10.1039/c9py00247b
Zlatanic A. ; Radojcic D. ; Wan X. M. ; Messman J. M. ; Dvornic P. R. Suppression of crystallization in polydimethylsiloxanes and chain branching in their phenyl-containing copolymers . Macromolecules , 2017 , 50 ( 9 ), 3532 - 3543 . doi: 10.1021/acs.macromol.7b00474 http://dx.doi.org/10.1021/acs.macromol.7b00474
Wang Y. M. ; Cao R. W. ; Wang M. H. ; Liu X. M. ; Zhao X. Y. ; Lu Y. L. ; Feng A. C. ; Zhang L. Q. Design and synthesis of phenyl silicone rubber with functional epoxy groups through anionic copolymerization and subsequent epoxidation . Polymer , 2020 , 186 , 122077 . doi: 10.1016/j.polymer.2019.122077 http://dx.doi.org/10.1016/j.polymer.2019.122077
Bai L. ; Li Z. X. ; Zhao S. Z. ; Zheng J. P. Covalent functionalization of carbon nanotubes with hydroxyl-terminated polydimethylsiloxane to enhance filler dispersion, interfacial adhesion and performance of poly(methylphenylsiloxane) composites . Compos. Sci. Technol. , 2018 , 165 , 274 - 281 . doi: 10.1016/j.compscitech.2018.07.006 http://dx.doi.org/10.1016/j.compscitech.2018.07.006
Brachais L. ; Lauprêtre F. ; Caille J. R. ; Teyssié D. ; Boileau S. Solid-state organization of poly(methylmethacrylate)-poly(methylphenylsiloxane) based interpenetrating networks . Polymer , 2002 , 43 ( 6 ), 1829 - 1834 . doi: 10.1016/s0032-3861(01)00764-9 http://dx.doi.org/10.1016/s0032-3861(01)00764-9
Li C. ; Zhang D. Q. ; Wu L. B. ; Fan H. ; Wang D. Y. ; Li B. G. Ring-opening copolymerization of mixed cyclic monomers: a facile, versatile and structure-controllable approach to preparing poly(methylphenylsiloxane) with enhanced thermal stability . Ind. Eng. Chem. Res. , 2017 , 56 ( 25 ), 7120 - 7130 . doi: 10.1021/acs.iecr.7b01279 http://dx.doi.org/10.1021/acs.iecr.7b01279
Niu Z. ; Wu R. Y. ; Huang L. Y. ; Yang Y. X. ; Xia Z. ; Fan W. F. ; Sun W. ; Dai Q. Q. ; He J. Y. ; Bai C. X. A Poly(dimethyl-co-methylvinyl)siloxane-based elastomer with excellent ultra-low temperature elasticity driven by flexible alkyl branches . Eur. Polym. J. , 2022 , 174 , 111303 . doi: 10.1016/j.eurpolymj.2022.111303 http://dx.doi.org/10.1016/j.eurpolymj.2022.111303
He M. K. ; Zhang L. ; Ruan K. P. ; Zhang J. L. ; Zhang H. T. ; Lv P. ; Guo Y. Q. ; Shi X. T. ; Guo H. ; Kong J. ; Gu J. W. Functionalized aluminum nitride for improving hydrolysis resistances of highly thermally conductive polysiloxane composites . Nanomicro Lett. , 2025 , 17 ( 1 ), 134 . doi: 10.1007/s40820-025-01669-5 http://dx.doi.org/10.1007/s40820-025-01669-5
Sheima Y. ; Yuts Y. ; Frauenrath H. ; Opris D. M. Polysiloxanes modified with different types and contents of polar groups: synthesis, structure, and thermal and dielectric properties . Macromolecules , 2021 , 54 ( 12 ), 5737 - 5749 . doi: 10.1021/acs.macromol.1c00362 http://dx.doi.org/10.1021/acs.macromol.1c00362
Sun Y. ; Ren Y. Y. ; Li Q. ; Shi R. W. ; Hu Y. ; Guo J. N. ; Sun Z. ; Yan F. Conductive, stretchable, and self-healing ionic gel based on dynamic covalent bonds and electrostatic interaction . Chinese J. Polym. Sci. , 2019 , 37 ( 11 ), 1053 - 1059 . doi: 10.1007/s10118-019-2325-x http://dx.doi.org/10.1007/s10118-019-2325-x
Li Q. N. ; Zheng S. J. ; Liu Z. Y. ; Li W. Z. ; Wang X. W. ; Cao Q. ; Yan F. Strong, spontaneous, and self-healing poly(ionic liquid) elastomer underwater adhesive with borate ester dynamic crosslinking . Adv. Mater. , 2024 , 36 ( 50 ), 2413901 . doi: 10.1002/adma.202413901 http://dx.doi.org/10.1002/adma.202413901
0
Views
13
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution