浏览全部资源
扫码关注微信
四川大学高分子材料科学与工程学院 高分子材料工程国家重点实验室 成都 610065
[ "傅强, 男, 1963年1月生.四川大学高分子科学与工程学院教授.1993年获成都科技大学高分子材料加工专业博士学位, 1995~1997年美国阿克隆大学博士后, 1999~2000年德国弗莱堡大学洪堡学者.1999年获国家杰出青年基金, 2002受聘为教育部长江学者, 2011年入选自然科学基金委创新研究群体学术带头人.主要从事高分子材料成型加工和聚合物共混改性与纳米复合研究.迄今发表SCI论文400余篇, 获33项国家发明专利.2009年获得国家技术发明二等奖(第一完成人)" ]
纸质出版日期:2017-7,
收稿日期:2017-4-5,
修回日期:2017-5-8,
扫 描 看 全 文
王柯, 朱燕灵, 傅强. 聚丙烯的结晶形态调控与高性能化[J]. 高分子学报, 2017,(7):1073-1081.
Ke Wang, Yan-ling Zhu, Qiang Fu. Toward High-performance Polypropylene
王柯, 朱燕灵, 傅强. 聚丙烯的结晶形态调控与高性能化[J]. 高分子学报, 2017,(7):1073-1081. DOI: 10.11777/j.issn1000-3304.2017.17077.
Ke Wang, Yan-ling Zhu, Qiang Fu. Toward High-performance Polypropylene
聚丙烯作为目前最重要的通用塑料之一,对其进行高质化改性具有重大的现实意义.基于聚丙烯的同质多晶态行为,加入成核剂进行
β
结晶改性是改善聚丙烯韧性和热稳定性的有效方式.过去的研究主要关注结晶度、
β
晶含量等对性能的影响.而近年来我们提出通过调控聚丙烯的
β
结晶形态来实现其高性能化的新思路,并开展了卓有成效的研究工作:(1)利用小分子成核剂的溶解性及自组装影响聚丙烯的结晶行为,获得了如球晶、横晶、花瓣状晶等形态,实现了对
β
结晶形态的有效调控;(2)特定的结晶形态能够使聚丙烯的韧性显著增加,并且热变形温度进一步提高,证实结晶形态会对宏观性能发挥重要作用;(3)
β
结晶形态调控有利于获得更佳的成孔均匀性与高的孔隙率,对制备高品质锂电池隔膜有明显的指导意义.结晶形态调控可望成为实现结晶性聚合物高性能化与功能化通行的、高效的策略.
Polypropylene (PP) is still one of the most important general plastics
and it is of great significance to achieve high-performance PP materials. As a semicrystalline polymer
PP is essentially polymorphism. At least five polymorphs have been identified
i.e.
α
β
γ
δ
and quasi-hexagonal form. Among them
β
form is highly desirable
due to its excellent physical properties. However
β
crystals are hard to be obtained
via
common crystalline condition. The polymorphic modification by adding
β
-nucleator (
β
-NA) is a powerful method for achieving dominant
β
form and thus tailoring the toughness and thermal stability of PP. In contrast to many past researches which focused on the roles of crystallinity and
β
-phase content
a new methodology has been recently suggested which optimized the physical properties of PP by controlling
β
-crystalline morphology. Some relevant studies include:(1) to assess the solubility and self-assembly behavior of
β
-NA by using temperature gradient (g-
T
) field; (2) to control the
β
-crystalline morphology by processing varables and
β
-NA content
and receive super-high toughness and good heat stability; (3) to reveal the rule of stretching-induced porosity in the
β
-PP films with different crystalline morphologies.
β
-NA of low-molecular-weight is soluble in the melt of PP
which will self-assemble into supermolecular structures prior to the primary crystallization of PP during the cooling process. Such supermolecular structures act as templates for the guidance of PP crystallization
resulting in special crystalline morphologies. By using the g-
T
technique
the dependence of
β
-NA solubility on molten temperature and nucleator loading could be clarified readily. Thus the crystalline morphology of
β
-PP is controllable
and different morphologies
such as spherulite
transcrystallinity and flower-like aggregations
are achievable through adjusting the solubility and self-assembly behavior of
β
-NA. Special crystalline morphology leads to a significant increase in the tensile ductility of
β
-PP. Meanwhile
the heat distortion temperature and homogeneity of microporosity are also strongly dependent on
β
-crystalline morphology. Obviously
the manipulation of crystalline morphology is a promising pathway to realize high-performance in crystalline polymers.
聚丙烯同质多晶态β晶形态增韧微孔膜
PolypropylenePolymorphsβ-Crystalline morphologyToughnessMicroporous membranep
Dongliang Wang , Shaohui Guo , Jiachun Feng , De Zheng . . Plastics Additives , 2007 . ( 2 ): 1 - 7.
王 东亮 , 郭 邵辉 , 冯 嘉春 , 郑 德 . . 塑料助剂 , 2007 . ( 2 ): 1 - 7.
Lan Su , Jian Huangfu , Jianchang Cao , Denghao Li , Xiaochun Cheng . . Advanced Materials Industry , 2014 . ( 6 ): 56 - 60.
苏 兰 , 皇 甫建 , 曹 建常 , 李 登好 , 程 晓春 . . 新材料产业 , 2014 . ( 6 ): 56 - 60.
Yang He , Rui Huang , De Zheng . . Chinese Polymer Bulletin , 2008 . ( 1 ): 24 - 32.
何 阳 , 黄 锐 , 郑 德 . . 高分子通报 , 2008 . ( 1 ): 24 - 32.
Xianzu Luo , Yuefei Zhang , Xiaojun Yang , Ting Zhou , Yao Chang . . China Plastics Industry , 2012 . 40 ( 2 ): 9 - 12.
罗 贤祖 , 张 跃飞 , 杨 小俊 , 周 婷 , 常 瑶 . . 塑料工业 , 2012 . 40 ( 2 ): 9 - 12.
Hui Chen , Yuefei Zhang , Danjun Sun , Xiangfeng Lin , Pengpeng Cai . . China Plastics Industry , 2015 . 43 ( 9 ): 10 - 14.
陈 慧 , 张 跃飞 , 孙 丹君 , 林 祥凤 , 蔡 鹏鹏 . . 塑料工业 , 2015 . 43 ( 9 ): 10 - 14.
Xiaolong Zhang , Pingsheng Zhang , Bochao Zhu , Xiaoyan Liu , Chunliu Yang . . Chian Synthetic Resin and Plastics , 2015 . 32 ( 5 ): 68 - 71.
张 晓龙 , 张 平生 , 朱 博超 , 刘 小燕 , 杨 春柳 . . 合成树脂及塑料 , 2015 . 32 ( 5 ): 68 - 71.
L Chvatalova , J Navratilova , R Cermak , M Raab , M Obadal . . Macromolecules , 2009 . 42 ( 19 ): 7413 - 7417 . DOI:10.1021/ma9005878http://doi.org/10.1021/ma9005878.
S Zhao , Z Cai , Z Xin . . Polymer , 2008 . 49 ( 11 ): 2745 - 2754 . DOI:10.1016/j.polymer.2008.04.012http://doi.org/10.1016/j.polymer.2008.04.012.
F Luo , K Wang , N Ning , C Geng , H Deng , F Chen , Q Fu . . Polym Adv Technol , 2011 . 22 ( 12 ): 2044 - 2054 . DOI:10.1002/pat.v22.12http://doi.org/10.1002/pat.v22.12.
J Varga , A Menyhard . . Macromolecules , 2007 . 40 ( 7 ): 2422 - 2431 . DOI:10.1021/ma062815jhttp://doi.org/10.1021/ma062815j.
W Xiao , P Wu , J Feng , R Yao . . J Appl Polym Sci , 2009 . 111 ( 2 ): 1076 - 1085 . DOI:10.1002/app.v111:2http://doi.org/10.1002/app.v111:2.
Z Wu , G Wang , M Zhang , K Wang , Q Fu . . Soft Matter , 2016 . 12 ( 2 ): 594 - 601 . DOI:10.1039/C5SM02030Ahttp://doi.org/10.1039/C5SM02030A.
F Luo , C Geng , K Wang , H Deng , F Chen , Q Fu , B Na . . Macromolecules , 2009 . 42 ( 23 ): 9325 - 9331 . DOI:10.1021/ma901651fhttp://doi.org/10.1021/ma901651f.
Y Zhu , Y Zhao , Q Fu . . Polymer , 2016 . 103 ( 2 ): 405 - 414.
P Arora , Z Zhang . . Chem Rev , 2004 . 104 ( 10 ): 4419 - 4462 . DOI:10.1021/cr020738uhttp://doi.org/10.1021/cr020738u.
T Wu , M Xiang , Y Cao , J Kang , F Yang . . RSC Adv , 2014 . 4 ( 69 ): 36689 - 36701 . DOI:10.1039/C4RA03589Ehttp://doi.org/10.1039/C4RA03589E.
T Wu , M Xiang , Y Cao , J Kang , F Yang . . RSC Adv , 2014 . 4 ( 81 ): 43012 - 43023 . DOI:10.1039/C4RA06310Dhttp://doi.org/10.1039/C4RA06310D.
T Wu , M Xiang , Y Cao , J Kang , F Yang . . RSC Adv , 2015 . 5 ( 54 ): 43496 - 43507 . DOI:10.1039/C5RA05844Ahttp://doi.org/10.1039/C5RA05844A.
H Bai , W Zhang , H Deng , Q Zhang , Q Fu . . Macromolecules , 2011 . 44 ( 6 ): 1233 - 1237 . DOI:10.1021/ma102439thttp://doi.org/10.1021/ma102439t.
H Bai , C Huang , H Xiu , Q Zhang , Q Fu . . Polymer , 2014 . 55 ( 26 ): 6924 - 6934 . DOI:10.1016/j.polymer.2014.10.059http://doi.org/10.1016/j.polymer.2014.10.059.
H Bai , C Huang , H Xiu , Q Zhang , H Deng , K Wang , F Chen , Q Fu . . Biomacromolecules , 2014 . 15 ( 4 ): 1507 - 1514 . DOI:10.1021/bm500167uhttp://doi.org/10.1021/bm500167u.
M Kristiansen , M Werner , T Tervoort , P Smith , M Blomenhofer , H Schmidt . . Macromolecules , 2003 . 36 ( 14 ): 5150 - 5156 . DOI:10.1021/ma030146thttp://doi.org/10.1021/ma030146t.
T Shepard , C Delsorbo , R Louth , J Walborn , D Norman , N Harvey , R Spontak . . J Polym Sci, Part B:Polym Phys , 1997 . 35 ( 16 ): 2617 - 2628 . DOI:10.1002/(ISSN)1099-0488http://doi.org/10.1002/(ISSN)1099-0488.
A Nogales , R Olley , G Mitchell . . Macromol Rapid Commun , 2003 . 24 ( 8 ): 496 - 502 . DOI:10.1002/marc.200390077http://doi.org/10.1002/marc.200390077.
A Nogales , G Mitchell , A Vaughan . . Macromolecules , 2003 . 36 ( 13 ): 4898 - 4906 . DOI:10.1021/ma0343028http://doi.org/10.1021/ma0343028.
L Balzano , S Rastogi , G Peters . . Macromolecules , 2008 . 41 ( 2 ): 399 - 408 . DOI:10.1021/ma071460ghttp://doi.org/10.1021/ma071460g.
0
浏览量
32
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构