浏览全部资源
扫码关注微信
1.中山大学材料科学与工程学院 聚合物复合材料及功能材料教育部重点实验室 广州 510275
2.高分子物理与化学国家重点实验室 中国科学院化学研究所 北京 100190
黄华华, E-mail:huanghh27@mail.sysu.edu.cnHua-hua Huang, E-mail:huanghh27@mail.sysu.edu.cn
陈永明, E-mail:chenym35@mail.sysu.edu.cnYong-ming Chen, E-mail:chenym35@mail.sysu.edu.cn
纸质出版日期:2017-9-20,
收稿日期:2017-4-27,
修回日期:2017-5-16,
扫 描 看 全 文
闫业超, 黄华华, 朱雯, 刘利新, 张科, 陈永明. 两亲性杂侧链聚合物刷的合成及其乳化功能[J]. 高分子学报, 2017,(9):1531-1537.
Ye-chao Yan, Hua-hua Huang, Wen Zhu, Li-xin Liu, Ke Zhang, Yong-ming Chen. Synthesis of Amphiphilic Polymer Brushes with Mixed Side Chains and Their Emulsifying Function[J]. Acta Polymerica Sinica, 2017,(9):1531-1537.
闫业超, 黄华华, 朱雯, 刘利新, 张科, 陈永明. 两亲性杂侧链聚合物刷的合成及其乳化功能[J]. 高分子学报, 2017,(9):1531-1537. DOI: 10.11777/j.issn1000-3304.2017.17111.
Ye-chao Yan, Hua-hua Huang, Wen Zhu, Li-xin Liu, Ke Zhang, Yong-ming Chen. Synthesis of Amphiphilic Polymer Brushes with Mixed Side Chains and Their Emulsifying Function[J]. Acta Polymerica Sinica, 2017,(9):1531-1537. DOI: 10.11777/j.issn1000-3304.2017.17111.
报道了一种随机高密度接枝亲水、疏水聚合物侧链的刷形两亲性聚合物.首先,结合可逆加成-断裂链转移(RAFT)聚合和后修饰方法,得到含叠氮侧基的聚甲基丙烯酸缩水甘油酯(PGMA-N
3
)作为主链;再分别合成端炔基聚苯乙烯(PS)和端炔基聚环氧乙烷(PEO),然后通过铜催化的叠氮-炔环加成反应,将疏水性PS和亲水性PEO同时高效的接到PGMA主链上,制得两亲性杂侧链的聚合物刷.由凝胶渗透色谱(SEC)分析得知,在主链叠氮基团与两侧链总炔基的摩尔投料比为1:1的条件下,PS和PEO的接枝效率很高,都大于90%.通过调节主链长度和2种侧链的投料比,获得不同组成的聚合物刷.通过等质量的甲苯/水混合体系,考察两亲性聚合物刷的乳化能力,发现主链聚合度为100,PS:PEO比例为70:30的聚合物刷表现出最佳的乳化性能.
A series of amphiphilic polymer brushes with a high grafting density as a new polymeric surfactant are developed. A great deal of research on amphiphilic block polymers has been reported to apply as the surfactants
but the research on polymer brush is still scarce. Nevertheless
amphiphilic polymer brushes would be good surfactants due to their rich surface properties and various morphologies. Therefor
a series of polymer brushes with mixed hydrophilic and hydrophobic side chains were designed and synthesized
via
a grafting-onto approach. Firstly
a polymeric backbone of poly(glycidyl methacrylate) (PGMA) with pendent azide groups was prepared by reversible addition-fragmentation chain transfer (RAFT) mediated radical polymerization followed by post-modification. Two PGMA polymers with degrees of polymerization (DP) of 100 and 390 were obtained by tuning the ratio of the monomer to initiate. Then
an alkynyl-terminated polystyrene (PS
DP=44) as a hydrophobic side chain was prepared
via
RAFT polymerization using an alkynyl-containing chain transfer agent
and an alkynyl-terminated poly(ethylene oxide) (PEO
DP=113) as a hydrophilic side chain was obtained by a nucleophilic substitution reaction of PEO with propargyl bromide. Finally
the two types of side chains were simultaneously coupled onto the PGMA backbone by a copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction
to yield the PGMA-
g
-(PS
44
r
-PEO
113
) polymer brush. The results from size exclusion chromatography (SEC) indicated that the grafting ratios of both PS
44
and PEO
113
were above 90%
with a molar feeding ratio of azide to alkynyl group at 1:1 at 50℃ in dimethyl formamide. A series of polymer brushes with different compositions were obtained by tuning the DP of the backbone and the feeding ratio of the two side chains. All samples have narrow molecular weight distributions (
M
w
/
M
n
<
1.20). The emulsifying ability of these amphiphilic polymer brushes in a toluene/water system was characterized. To stabilize toluene/water emulsion
the required amount of PGMA
100
-
g
-(PS
44
r
-PEO
113
) decreased with an increase in the content of PS
44
side chain. A stable emulsion can be formed using PGMA
100
-
g
-[(PS
44
)
70
r
-(PEO
113
)
30
] at a concentration of as low as 0.002 wt% versus the weight of toluene. In addition
the polymer brush with a long backbone of PGMA
390
was not beneficial to emulsion stability. In comparison with the other polymer brushes
the polymer brush with a short backbone of PGMA
100
and a molar ratio of the side chains PS
44
:PEO
113
of 70:30 was found to exhibit the most efficient emulsifying ability.
聚合物刷耦合法点击反应乳化性能
Polymer brushGrafting-ontoClick chemistryEmulsifying function
A Corsi , A Milchev , V G Rostiashvili , T A Vilgis . . Food Hydrocolloid , 2007 . 21 870 - 878 . DOI:10.1016/j.foodhyd.2006.08.012http://doi.org/10.1016/j.foodhyd.2006.08.012.
Jian Xu . . Oilfield Chemistry , 1997 . 14 290 - 294 . http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yjhx703.023&dbname=CJFD&dbcode=CJFQ.
徐 坚 . . 油田化学 , 1997 . 14 290 - 294 . http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yjhx703.023&dbname=CJFD&dbcode=CJFQ.
A H B Iian , I Noda , L A Schechtman , Y Talmon . . Polymer , 1992 . 33 2043 - 2050 . DOI:10.1016/0032-3861(92)90869-Xhttp://doi.org/10.1016/0032-3861(92)90869-X.
F Z Ren , Y Gao , J L Chen , Q F Jing , Y Yu . . Pharm Dev Technol , 2013 . 18 745 - 751 . DOI:10.3109/10837450.2012.734517http://doi.org/10.3109/10837450.2012.734517.
J M Lee , P J Saikia , K Lee , S Choe . . Macromolecules , 2008 . 41 2037 - 2044 . DOI:10.1021/ma071719vhttp://doi.org/10.1021/ma071719v.
J G Zhang , M R Dubay , C J Houtman , S J Severtson . . Macromolecules , 2009 . 42 5080 - 5090 . DOI:10.1021/ma900795fhttp://doi.org/10.1021/ma900795f.
M S Kyriacou , S C Hadjiyannakou , M Vamvakaki , C S Patrickios . . Macromolecules , 2004 . 37 7181 - 7187 . DOI:10.1021/ma049325ghttp://doi.org/10.1021/ma049325g.
D Hua , J Tang , J Jiang , X Zhu , R Bai . . Macromolecules , 2009 . 42 8697 - 8701 . DOI:10.1021/ma9018334http://doi.org/10.1021/ma9018334.
P S Mohanty , H Dietsch , L Rubatat , A Stradner , K Matsumoto , H Matsuoka , P Schurtenberger . . Langmuir , 2009 . 25 1940 - 1948 . DOI:10.1021/la803125vhttp://doi.org/10.1021/la803125v.
S C Hadjiyannakou , M Vamvakaki , C S Patrickios . . Polymer , 2004 . 45 3681 - 3692 . DOI:10.1016/j.polymer.2004.03.079http://doi.org/10.1016/j.polymer.2004.03.079.
S Garnier , A Laschewsky . . Langmuir , 2006 . 22 4044 - 4053 . DOI:10.1021/la0600595http://doi.org/10.1021/la0600595.
W W Li , J A Yoon , K Matyjaszewski . . J Am Chem Soc , 2010 . 132 7823 - 7825 . DOI:10.1021/ja100685shttp://doi.org/10.1021/ja100685s.
W Zhang , Z P Du , W X Wang , G J Li . . J Disper Sci Technol , 2012 . 33 1642 - 1648 . DOI:10.1080/01932691.2011.623544http://doi.org/10.1080/01932691.2011.623544.
W Zhang , Z P Du , C H Chang , G Y Wang . . J Colloid Interf Sci , 2009 . 337 563 - 568 . DOI:10.1016/j.jcis.2009.05.043http://doi.org/10.1016/j.jcis.2009.05.043.
F Liu , J W Hu , G J Liu , C M Hou , S D Lin , H L Zou , G W Zhang , J P Sun , H S Luo , Y Y Tu . . Macromolecules , 2013 . 46 2646 - 2657 . DOI:10.1021/ma302663uhttp://doi.org/10.1021/ma302663u.
N H Raduan , T S Horozov , T K Georgiou . . Soft Matter , 2010 . 6 2321 - 2329 . DOI:10.1039/b926822ghttp://doi.org/10.1039/b926822g.
W W Li , Y Yu , M Lamson , M S Silverstein , R D Tilton , K Matyjaszewski . . Macromolecules , 2012 . 45 9419 - 9426 . DOI:10.1021/ma3016773http://doi.org/10.1021/ma3016773.
L W Li , J X Yang , J F Zhou . . Macromolecules , 2013 . 46 2808 - 2817 . DOI:10.1021/ma3022025http://doi.org/10.1021/ma3022025.
Y Tsukahara , K Tsutsumi , Y Yamashita , S Shimada . . Macromolecules , 1990 . 23 5201 - 5208 . DOI:10.1021/ma00227a006http://doi.org/10.1021/ma00227a006.
Y M Chen . . Macromolecules , 2012 . 45 2619 - 2631 . DOI:10.1021/ma201495mhttp://doi.org/10.1021/ma201495m.
P Zhao , Y C Yan , X Q Feng , L X Liu , C Wang , Y M Chen . . Polymer , 2012 . 53 1992 - 2000 . DOI:10.1016/j.polymer.2012.02.055http://doi.org/10.1016/j.polymer.2012.02.055.
Y C Yan , Y Shi , W Zhu , Y M Chen . . Polymer , 2013 . 54 5634 - 5642 . DOI:10.1016/j.polymer.2013.08.036http://doi.org/10.1016/j.polymer.2013.08.036.
0
浏览量
17
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构