浏览全部资源
扫码关注微信
1.常州大学材料科学与工程学院 江苏省环境友好高分子材料重点实验室 常州 213164
2.复旦大学聚合物分子工程国家重点实验室 上海 200433
E-mail: wangcy@cczu.edu.cn Chen-yi Wang, E-mail: wangcy@cczu.edu.cn
纸质出版日期:2018-9,
收稿日期:2018-1-9,
修回日期:2018-2-12,
扫 描 看 全 文
汪称意, 周远鹏, 徐常, 赵晓燕, 李坚, 任强. 一类含多磺酸结构侧链型聚芳醚酮质子交换膜材料的合成及性能研究[J]. 高分子学报, 2018,0(9):1194-1201.
Chen-yi Wang, Yuan-peng Zhou, Chang Xu, Xiao-yan Zhao, Jian Li, Qiang Ren. Synthesis and Properties of Side-chain Type Poly(arylene ether ketone)s with Multiple Sulfonic Groups for Proton Exchange Membranes[J]. Acta Polymerica Sinica, 2018,0(9):1194-1201.
汪称意, 周远鹏, 徐常, 赵晓燕, 李坚, 任强. 一类含多磺酸结构侧链型聚芳醚酮质子交换膜材料的合成及性能研究[J]. 高分子学报, 2018,0(9):1194-1201. DOI: 10.11777/j.issn1000-3304.2018.18010.
Chen-yi Wang, Yuan-peng Zhou, Chang Xu, Xiao-yan Zhao, Jian Li, Qiang Ren. Synthesis and Properties of Side-chain Type Poly(arylene ether ketone)s with Multiple Sulfonic Groups for Proton Exchange Membranes[J]. Acta Polymerica Sinica, 2018,0(9):1194-1201. DOI: 10.11777/j.issn1000-3304.2018.18010.
为进一步改善芳香型磺化聚合物质子交换膜材料的离子传导率、尺寸稳定性和耐化学氧化稳定性,从聚合物结构设计出发,首先利用9
9-双(3-苯基-4-羟基)苯基芴与4
4′-(六氟异亚丙基)二苯酚、1
4-二(4-氟苯甲酰基)苯经芳香亲核缩聚合成了一系列含芴和苯侧基结构新型聚芳醚酮聚合物(4-PAEK-
xx
),进一步通过温和的后磺化反应,制备了一系列含多磺酸结构侧链型聚芳醚酮质子交换膜(4-SPAEK-
xx
). 对所制备的侧链型聚芳醚酮质子交换膜的结构和性能分别进行了表征分析. 结果表明,该类质子交换膜具有适中的吸水率和较低的溶胀率,80 °C时的吸水率和溶胀率分别在21% ~ 51.2%和7.4% ~ 17.2%. 该类聚芳醚酮质子交换膜展现出了良好的离子传导性,80 °C时的离子传导率在115 ~ 171 mS/cm,其中4-PAEK-45膜(离子交换容量为2.12 mequiv/g)的离子传导率已经超过了商品化的Nafion膜. 此外,所制备的侧链型聚芳醚酮质子交换膜还表现出了良好的热稳定性、力学性能和耐化学氧化性. 磺化膜优良的综合性能主要归因于侧链多磺酸结构和长尺寸含氟疏水结构单元的同时引入,其中侧链多磺酸结构的引入降低了主链磺化结构单元的比例,同时使亲水性的磺酸基团与分子主链分隔开来;而长尺寸含氟疏水性结构单元的引入进一步提高了膜材料的尺寸稳定性和耐氧化稳定性.
Aromatic sulfonated polymers are one class of very important functional polymers and can be used as proton exchange membranes (PEMs) for fuel cells. As one of the key components in fuel cells
they can provide ionic pathway for proton transport and act as a separator for the reactants. In order to improve their ionic conductivity and dimensional and chemical oxidation stabilities
this study reports a series of sulfonated poly(aryl ether ketone)s proton exchange membrane materials from their design of macromolecular structures. A series of novel poly(arylene ether ketone)s containing fluorene and pendant phenyl groups (4-PAEK-
xx
) were first synthesized through nucleophilic polycondensation reaction using 9
9-bis(3-phenyl-4-hydroxy) phenyl fluorene
4
4′-(hexafluoroisopropylidene)diphenol and 1
4-bis(4-fluorobenzoyl)benzene as starting materials. They were then used to prepare a series of side-chain type poly(arylene ether ketone)s proton exchange membranes with multiple sulfonic groups (4-SPAEK-
xx
) by mild post-sulfonation reaction and solution casting. The structures and properties of these membranes were investigated. The results indicated that 4-SPAEK-
xx
membranes displayed moderate water absorption and low swelling ratio with the values in the range of 21% − 51.2% and 7.4% − 17.2% at 80 °C
respectively. These proton exchange membranes also exhibited good ionic conductivity with the values in the range of 115 − 171 mS/cm at 80 °C. The ionic conductivity of 4-PAEK-45 membrane (the ion exchange capacity of 2.12 mequiv/g) was even higher than that of the commercialized Nafion membrane. Moreover
these membranes had good thermal and mechanical property and chemical oxidative stability. Excellent comprehensive properties of 4-SPAEK-
xx
membranes were mainly ascribed to the incorporation of multiple pendant sulfonic groups and long fluorinated hydrophobic structures. The incorporation of multiple pendant sulfonic groups can not only effectively reduce the content of sulfonated units in the polymers
but also separate the ionic groups from the polymer backbones. Meanwhile
the incorporation of long fluorinated hydrophobic structures could further improve the dimensional and chemical oxidation stability of the obtained membranes. It is believed that this research would provide a valuable insight for the design and preparation of proton exchange polymer membranes of high-performance with aromatic sulfonated groups.
磺化聚芳醚酮质子交换膜质子传导率溶胀率化学氧化稳定性
Sulfonated poly(arylene ether ketone)sProton exchange membraneProton conductivitySwelling ratioChemical oxidative stability
Brlan C H, Steele A H . Nature , 2001 . 414 345 - 352 . DOI:10.1038/35104620http://doi.org/10.1038/35104620 .
Hickner M A, Ghassemi H, Kim Y S, Einsla B R, McGrath J E . Chem Rev , 2004 . 104 4587 - 4611 . DOI:10.1021/cr020711ahttp://doi.org/10.1021/cr020711a .
Park C H, Lee S Y, Hwang D S, Shin D W, Cho D H, Lee K H, Kim T W, Kim T W, Lee M, Kim D S, Doherty C M, Thornton A W, Hill A J, Guiver M D, Lee Y M . Nature , 2016 . 532 480 - 483 . DOI:10.1038/nature17634http://doi.org/10.1038/nature17634 .
Asano N, Aoki M, Suzuki S, Miyatake K, Uchida H, Watanabe M . J Am Chem Soc , 2006 . 128 1762 - 1769 . DOI:10.1021/ja0571491http://doi.org/10.1021/ja0571491 .
Bose S, Kuila T, Nguyen T X H, Kim N H, Laua K T, Lee J H . Prog Polym Sci , 2011 . 36 813 - 843 . DOI:10.1016/j.progpolymsci.2011.01.003http://doi.org/10.1016/j.progpolymsci.2011.01.003 .
Zhang H, Shen P . Chem Rev , 2012 . 112 2780 - 2832 . DOI:10.1021/cr200035shttp://doi.org/10.1021/cr200035s .
Xing P, Robertson G P, Guiver M D, Mikhailenko S D, Kaliaguine S . Macromolecules , 2004 . 37 7960 - 7967 . DOI:10.1021/ma0494941http://doi.org/10.1021/ma0494941 .
Roy A, Hichner M A, Einsla B R, Harrison W L, McGrath J E . J Polym Sci, Part A: Polym Chem , 2009 . 47 384 - 391 . DOI:10.1002/pola.v47:2http://doi.org/10.1002/pola.v47:2 .
Tan N, Xiao G, Yan D . Chem Mater , 2010 . 22 1022 - 1031 . DOI:10.1021/cm9019217http://doi.org/10.1021/cm9019217 .
Weiber E A, Takamuku S, Jannasch P . Macromolecules , 2013 . 46 3476 - 3485 . DOI:10.1021/ma4002929http://doi.org/10.1021/ma4002929 .
Zhang Z, Wu L, Xu T . J Membr Sci , 2011 . 373 160 - 166 . DOI:10.1016/j.memsci.2011.03.002http://doi.org/10.1016/j.memsci.2011.03.002 .
Li M, Zhang G, Xu S, Zhao C, Han M, Zhang L, Jiang H, Liu Z, Na H . J Power Sources , 2014 . 255 101 - 107 . DOI:10.1016/j.jpowsour.2013.12.116http://doi.org/10.1016/j.jpowsour.2013.12.116 .
Wang C, Shen B, Zhou Y, Xu C, Chen W, Zhao X, Li J . Int J Hydrogen Energy , 2015 . 40 6422 - 6429 . DOI:10.1016/j.ijhydene.2015.03.078http://doi.org/10.1016/j.ijhydene.2015.03.078 .
Yan Xiaobo(严小波), Zhang Xulue(张虚略), Yuan Zufeng(袁祖凤), Geng Hui(耿慧), Bi Huiping(毕慧平), Hu Zhaoxia(胡朝霞), Chen Shouwen(陈守文). Acta Polymerica Sinica(高分子学报), 2016, (5): 577-583
Hu Meishao(胡美韶), Ni Jiangpeng(倪江鹏), Liu Danqing(刘丹青), Wang Lei(王雷). Acta Polymerica Sinica(高分子学报), 2017, (3): 534-541
Kreuer K D . J Membr Sci , 2001 . 185 29 - 39 . DOI:10.1016/S0376-7388(00)00632-3http://doi.org/10.1016/S0376-7388(00)00632-3 .
Peckham T J, Holdcroft S . Adv Mater , 2010 . 22 4667 - 4690 . DOI:10.1002/adma.v22:42http://doi.org/10.1002/adma.v22:42 .
Li N, Guiver M D . Macromolecules , 2014 . 47 2175 - 2198 . DOI:10.1021/ma402254hhttp://doi.org/10.1021/ma402254h .
Liu B, Robertson G P, Kim D S, Sun X, Jiang Z, Guiver M D . Polymer , 2010 . 51 403 - 413 . DOI:10.1016/j.polymer.2009.12.014http://doi.org/10.1016/j.polymer.2009.12.014 .
Wang C, Li N, Shin D W, Lee S Y, Kang N R, Lee Y M, Guiver M D . Macromolecules , 2011 . 44 7296 - 7306 . DOI:10.1021/ma2015968http://doi.org/10.1021/ma2015968 .
Wang C, Shin D W, Lee S Y, Kang N R, Robertson G P, Lee Y M, Guiver M D . J Mater Chem , 2012 . 22 25093 - 25101 . DOI:10.1039/c2jm34414ahttp://doi.org/10.1039/c2jm34414a .
Shen Bin(沈斌), Wang Chenyi(汪称意), Xu Chang(徐常), Chen Wentao(陈文涛), Li Jian(李坚), Ren Qiang(任强). Acta Polymerica Sinica(高分子学报), 2016, (10): 1409-1417
Gong F X, Zhang S B . J Power Sources , 2011 . 196 9876 - 9883 . DOI:10.1016/j.jpowsour.2011.08.028http://doi.org/10.1016/j.jpowsour.2011.08.028 .
0
浏览量
17
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构