浏览全部资源
扫码关注微信
清华大学化工系 先进材料教育部重点实验室 北京 100084
E-mail: xxm-dce@mail.tsinghua.edu.cn
纸质出版日期:2019-2,
网络出版日期:2018-12-6,
收稿日期:2018-8-13,
修回日期:2018-9-13,
扫 描 看 全 文
林晨, 谢续明. 熔融法制备金属离子配位的氧化石墨烯/聚甲基丙烯酸甲酯复合材料及其性能研究[J]. 高分子学报, 2019,50(2):170-178.
Chen Lin, Xu-ming Xie. Preparation of GO/PMMA Nanocomposites with Significantly Increased Properties through Metal Ion Coordination[J]. Acta Polymerica Sinica, 2019,50(2):170-178.
林晨, 谢续明. 熔融法制备金属离子配位的氧化石墨烯/聚甲基丙烯酸甲酯复合材料及其性能研究[J]. 高分子学报, 2019,50(2):170-178. DOI: 10.11777/j.issn1000-3304.2018.18178.
Chen Lin, Xu-ming Xie. Preparation of GO/PMMA Nanocomposites with Significantly Increased Properties through Metal Ion Coordination[J]. Acta Polymerica Sinica, 2019,50(2):170-178. DOI: 10.11777/j.issn1000-3304.2018.18178.
通过金属离子(二价铜离子、三价铁离子)配位的方法,增强了氧化石墨烯(GO)与聚甲基丙烯酸甲酯(PMMA)之间基体-填料的相互作用,实现了GO/聚合物复合材料的抗拉伸性能和热稳定性的大幅提升. 采用红外光谱对聚合物基体加入GO和金属离子前后的特征峰变化进行研究,观察配位键是否成功作用于基体与填料之间. 使用拉曼光谱分析了GO的表面结构,结果表明金属离子的加入对GO表面缺陷情况的影响很小. 采用直接熔融法和母料法2种方法制备了复合材料,并对其进行性能测试,发现母料法制备的样品的力学性能更好. 用扫描电子显微镜(SEM)观察材料的断面,结果表明,使用母料法制备的样品,其内部纳米材料的分散均匀性优于直接熔融法的样品. 母料法制备的GO/PMMA复合材料拥有优异的力学和热学性能,而在引入了金属离子进行配位之后,其杨氏模量进一步提升29.6%,抗拉强度提升31.8%,最大热失重温度提升26°C,表明配位键提供的微观强相互作用增强了材料的宏观性能.
Metal ion coordinated GO/PMMA composites have been prepared by melt method. The interfacial interaction between the nanofiller and the polymer matrix is significantly increased due to the coordination bonding. As a result
the mechanical and thermal properties of the composites are highly improved. To study the property variation with the change of metal ions and preparation methods
two different metal ions (Cu(II) and Fe(III)) were added into the GO/PMMA system
respectively
and the composites were prepared by two different methods—the direct-melt method and the master-batch method. Fourier transform infrared spectroscopy (FTIR)
Raman spectra
X-ray diffraction (XRD)
scanning electron microscopy (SEM)
tensile test
and thermogravimetic analysis (TGA) were performed to study the structures and properties of the composites. The FTIR results showed that GO and PMMA are successfully bridged
via
coordination bonding
for the characteristic peaks showed obvious blue shifts. Raman spectra indicated that coordination causes no extra defect to the GO sheets. SEM images showed that the GO sheets could be homogeneously dispersed in PMMA through master-batch method
while a poor dispersion through direct-melt method. From the tensile test results
it could be seen that the composites prepared by master-batch method had a better mechanical performance than those prepared by direct-melt method because of the different dispersion states. Fe(III)-coordinated composites have better mechanical performance than Cu(II)-coordinated composites do
due to the higher valence state of iron ions. The Young’s modulus and tensile strength of Fe(III)-0.5 wt% GO/PMMA composite are 29.6% and 31.8%
respectively
higher than those of the composite with only GO
and 75.0% and 35.7%
respectively
higher than those of neat PMMA. The temperature of maximum weight loss of Fe(III)-0.5 wt% GO/PMMA is 26 °C higher than that of GO/PMMA
and 82 °C higher than that of neat PMMA. This metal ion coordination method is efficient and simple
and can easily bridge nanofillers and polymer matrixes containing polar groups. This approach opens up a new strategy for improving the performance of many kinds of nanocomposites.
氧化石墨烯金属离子配位聚甲基丙烯酸甲酯纳米复合材料拉伸性能
Graphene oxideCoordinationPMMANanocompositeTensile property
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A . Science , 2004 . 306 666 - 669 . DOI:10.1126/science.1102896http://doi.org/10.1126/science.1102896 .
Nair R, Blake P, Grigorenko A, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K . Science , 2008 . 320 1308 - 1308 . DOI:10.1126/science.1156965http://doi.org/10.1126/science.1156965 .
Ziegler K . Phys Rev B , 2007 . 75 233407 DOI:10.1103/PhysRevB.75.233407http://doi.org/10.1103/PhysRevB.75.233407 .
Weitz R T, Yacoby A . Nat Nanotechnol , 2010 . 5 699 - 700 . DOI:10.1038/nnano.2010.201http://doi.org/10.1038/nnano.2010.201 .
Geim A K . Science , 2009 . 324 1530 - 1534 . DOI:10.1126/science.1158877http://doi.org/10.1126/science.1158877 .
Lee C, Wei X, Kysar J W, Hone J . Science , 2008 . 321 385 - 388 . DOI:10.1126/science.1157996http://doi.org/10.1126/science.1157996 .
Jiang L, Shen X P, Wu J L, Shen K C . J Appl Polym Sci , 2010 . 118 275 - 279 . DOI:10.1002/app.v118:1http://doi.org/10.1002/app.v118:1 .
Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, Jin M H, Jeong H K, Kim J M, Choi J H, Lee Y H . Adv Funct Mater , 2009 . 19 1987 - 1992 . DOI:10.1002/adfm.v19:12http://doi.org/10.1002/adfm.v19:12 .
Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J . J Phys Chem C , 2008 . 112 8192 - 8195 . DOI:10.1021/jp710931hhttp://doi.org/10.1021/jp710931h .
Pham V H, Cuong T V. Nguyen-phan T D, Pham D H, Kim E J, Hur S H, Shin E W, Kim S, Chung J S. . Chem Commun , 2010 . 46 4375 - 4377 . DOI:10.1039/c0cc00363hhttp://doi.org/10.1039/c0cc00363h .
Xu Y, Hong W, Bai H, Li C, Shi G . Carbon , 2009 . 47 3538 - 3543 . DOI:10.1016/j.carbon.2009.08.022http://doi.org/10.1016/j.carbon.2009.08.022 .
Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y . Adv Funct Mater , 2009 . 19 2297 - 2302 . DOI:10.1002/adfm.v19:14http://doi.org/10.1002/adfm.v19:14 .
Yu D S, Kuila T, Kim N H, Lee J H . Chem Eng J , 2014 . 245 311 - 322 . DOI:10.1016/j.cej.2014.02.025http://doi.org/10.1016/j.cej.2014.02.025 .
Chen J, Li Y, Zhang Y, Zhu Y . J Appl Polym Sci , 2015 . 132 42000 .
Lin C, Liu Y T, Xie X M . Aust J Chem , 2014 . 67 121 - 126 . DOI:10.1071/CH13339http://doi.org/10.1071/CH13339 .
Pan L, Liu Y T, Xie X M, Zhu X D . Chem Asian J , 2014 . 9 1519 - 1524 . DOI:10.1002/asia.v9.6http://doi.org/10.1002/asia.v9.6 .
Bai H, Li C, Wang X, Shi G . J Phys Chem C , 2011 . 115 5545 - 5551.
Chen Nan(陈楠), Xie Xuming(谢续明) . 高分子学报 , Acta Polymerica Sinica , 2013 . ( 5 ): 635 - 642.
Zhong M, Liu X Y, Shi F K, Zhang L Q, Wang X P, Cheetham A G, Cui H G, Xie X M . Soft Matter , 2015 . 11 4235 - 4241 . DOI:10.1039/C5SM00493Dhttp://doi.org/10.1039/C5SM00493D .
Liu Y T, Feng Q P, Xie X M, Xe X Y . Carbon , 2011 . 49 3371 - 3375 . DOI:10.1016/j.carbon.2011.03.055http://doi.org/10.1016/j.carbon.2011.03.055 .
Goncalves G, Marques P A A P, Timmons A B, Bdkin I, Singh M K, Emami N, Gracio J . J Mater Chem , 2010 . 20 9927 - 9934 . DOI:10.1039/c0jm01674hhttp://doi.org/10.1039/c0jm01674h .
Zhong M, Liu Y T, Xie X M . J Mater Chem B , 2015 . 3 4001 - 4008 . DOI:10.1039/C5TB00075Khttp://doi.org/10.1039/C5TB00075K .
Liu Y T, Tan Z, Xie X M, Wang Z F, Ye X Y . Chem Asian J , 2013 . 8 817 - 823 . DOI:10.1002/asia.v8.4http://doi.org/10.1002/asia.v8.4 .
Jurow M, Manichev V, Pabon C, Hageman B, Matolina Y, Drain C M . Inorg Chem , 2013 . 52 10576 - 10582 . DOI:10.1021/ic401563fhttp://doi.org/10.1021/ic401563f .
Park S, Lee K S, Bozoklu G, Cai W, Nguyen S T, Ruoff R S . ACS Nano , 2008 . 2 572 - 578 . DOI:10.1021/nn700349ahttp://doi.org/10.1021/nn700349a .
Cong H P, Wang P, Yu S H . Small , 2014 . 10 448 - 453 . DOI:10.1002/smll.v10.3http://doi.org/10.1002/smll.v10.3 .
Cong H P, Wang P, Yu S H . Chem Mater , 2013 . 25 3357 - 3362 . DOI:10.1021/cm401919chttp://doi.org/10.1021/cm401919c .
Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S . Carbon , 2007 . 45 1558 - 1565 . DOI:10.1016/j.carbon.2007.02.034http://doi.org/10.1016/j.carbon.2007.02.034 .
Shen J F, Hu Y, Shi M, Lu X, Qin C, Li C, Ye M X . Chem Mater , 2009 . 21 3514 - 3520 . DOI:10.1021/cm901247thttp://doi.org/10.1021/cm901247t .
Dreyer D R, Park S, Bielawski C W, Ruoff R S . Chem Soc Rev , 2010 . 39 228 - 240 . DOI:10.1039/B917103Ghttp://doi.org/10.1039/B917103G .
Vuluga D, Thomassin J M, Molenberg I, Huynen I, Gilbert B, Jerome C, Alexandre M, Detrembleur C . Chem Commun , 2011 . 47 2544 - 2546 . DOI:10.1039/c0cc04623jhttp://doi.org/10.1039/c0cc04623j .
0
浏览量
18
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构