浏览全部资源
扫码关注微信
1.深圳大学化学与环境工程学院 深圳 518060
2.中国科学院化学研究所 北京 100190
3.中国科学院大学化学科学学院 北京 100049
E-mail: fanlin@iccas.ac.cn Lin Fan, E-mail: fanlin@iccas.ac.cn
纸质出版日期:2020-9-1,
网络出版日期:2020-7-15,
收稿日期:2020-4-3,
修回日期:2020-5-14,
扫 描 看 全 文
刘仪, 许晓洲, 莫松, 韩刚, 朱才镇, 李翠华, 范琳. PMDA/ODA型聚酰亚胺薄膜的热氧化降解动力学研究[J]. 高分子学报, 2020,51(10):1169-1177.
Yi Liu, Xiao-zhou Xu, Song Mo, Gang Han, Cai-zhen Zhu, Cui-hua Li, Lin Fan. Thermo-oxidative Degradation Kinetics of PMDA/ODA-type Polyimide Film[J]. Acta Polymerica Sinica, 2020,51(10):1169-1177.
刘仪, 许晓洲, 莫松, 韩刚, 朱才镇, 李翠华, 范琳. PMDA/ODA型聚酰亚胺薄膜的热氧化降解动力学研究[J]. 高分子学报, 2020,51(10):1169-1177. DOI: 10.11777/j.issn1000-3304.2020.20093.
Yi Liu, Xiao-zhou Xu, Song Mo, Gang Han, Cai-zhen Zhu, Cui-hua Li, Lin Fan. Thermo-oxidative Degradation Kinetics of PMDA/ODA-type Polyimide Film[J]. Acta Polymerica Sinica, 2020,51(10):1169-1177. DOI: 10.11777/j.issn1000-3304.2020.20093.
聚酰亚胺薄膜热氧化降解为多步反应过程,仅通过单一动力学三要素(表观降解活化能
E、
反应模型
f
(
α
)以及指前因子
A
)无法充分反映其降解行为特性. 本研究基于均苯四甲酸二酐/4
4'-二氨基二苯醚(PMDA/ODA)型聚酰亚胺薄膜线性升温条件下的热氧化失重微分曲线,采用Fraser-Suzuki方程进行分峰拟合,将降解过程中每个反应步骤对应的失重行为区分开来,而后通过Friedman方法以及Master-plots理论对每个反应过程单独进行动力学分析,确定相应的
E
,
f
(
α
),以及
A
值. 动力学分析结果表明聚酰亚胺薄膜热氧化降解过程包含2个主反应,两者的
E
值分别为154.00和139.27 kJ/mol,ln
A
值分别为18.55和16.74 s
−1
,且这2个主反应均符合理论Avrami-Erofeev模型. 在此基础上,通过以上动力学参数重建并预测了动力学分析过程中所采用的升温程序以内以及之外的热失重曲线,验证了动力学参数的有效性.
Polyimide films have been successfully applied as cable insulation layer
optical fiber coating
printed circuit board and flexible solar cell substrates
owing to their excellent heat resistance and mechanical properties. During the devices fabrication and application
the polyimide films are usually exposed to elevated temperature or thermal oxidation environment
which often causes material degradation and results in device failure. Therefore
it is necessary to understand the thermo-oxidative degradation behavior of polyimide films in order to improve the reliability of the materials. The thermo-oxidative degradation of polyimide film was a multi-step process. It can not be described by one kinetic triplet
i.e.
the apparent activation energy
E
reaction model
f
(
α
) and pre-exponential factor
A
. In this study
the multi-step thermo-oxidative degradation of polyimide film derived from PMDA and ODA was investigated based on its thermogravimetirc curves under different linear heating rates. The overlapped processes incorporated in the overall thermo-oxidative degradation were firstly separated by peak-fitting of the differential thermogravimetric curves of polyimide film using Fraser-Suzuki function. Kinetic analysis of each separated process was subsequently conducted by employing Friedman method and Master-plots to determine the
E
f
(
α
) and
A
. The kinetic result revealed that two overlapped processes were involved in the overall thermo-oxidative degradation of polyimide film. The
E
values for the two processes were 154.00 and 139.27 kJ/mol respectively. The corresponding ln
A
values were 18.55 and 16.74 s
−1
. Both the two processes followed the Avrami-Erofeev model. Moreover
the validity of these kinetic parameters obtained were verified by reconstruction of original TGA curves and prediction of TGA curve not employed in the kinetic analysis.
聚酰亚胺薄膜热氧化降解多步反应过程动力学预测
Polyimide filmThermo-oxidative degradationMulti-step processKineticsPrediction
Gouzman I, Grossman E, Verker R, Atar N, Bolker A, Eliaz N. Adv Mater , 2019 . 31 ( 18 ): 1807738 DOI:10.1002/adma.201807738http://doi.org/10.1002/adma.201807738 .
Zhu F L, Xu Y F, Feng Q Q, Yang Q Y. J Therm Anal Calorim , 2018 . 131 ( 3 ): 2579 - 2587 . DOI:10.1007/s10973-017-6752-zhttp://doi.org/10.1007/s10973-017-6752-z .
Cai G M, Xu Z L, Li W B, Yu W D. J Therm Anal Calorim , 2015 . 121 ( 2 ): 627 - 632 . DOI:10.1007/s10973-015-4698-6http://doi.org/10.1007/s10973-015-4698-6 .
Liaw D J, Wang K L, Huang Y C, Lee K R, Lai J Y, Ha C S. Prog Polym Sci , 2012 . 37 ( 7 ): 907 - 974 . DOI:10.1016/j.progpolymsci.2012.02.005http://doi.org/10.1016/j.progpolymsci.2012.02.005 .
Kumagai S, Hosaka T, Kameda T, Yoshioka T. J Anal Appl Pyrolysis , 2016 . 120 75 - 81 . DOI:10.1016/j.jaap.2016.04.011http://doi.org/10.1016/j.jaap.2016.04.011 .
Hondred P R, Yoon S, Bowler N, Moukhina E, Kessler M R. High Perform Polym , 2011 . 23 ( 4 ): 335 - 342 . DOI:10.1177/0954008311409262http://doi.org/10.1177/0954008311409262 .
Lua A C, Su J C. Polym Degrad Stabil , 2006 . 91 ( 1 ): 144 - 153 . DOI:10.1016/j.polymdegradstab.2005.04.021http://doi.org/10.1016/j.polymdegradstab.2005.04.021 .
Nishikawa K, Ueta Y, Hara D, Yamada S, Koga N. J Therm Anal Calorim , 2017 . 128 ( 2 ): 891 - 906 . DOI:10.1007/s10973-016-5993-6http://doi.org/10.1007/s10973-016-5993-6 .
Su X, Xu Y, Li L S, Song C R. High Perform Polym , 2018 . 30 ( 7 ): 787 - 793 . DOI:10.1177/0954008317729741http://doi.org/10.1177/0954008317729741 .
Garcia-Garrido C, Sanchez-Jimenez P E, Perez-Maqueda L A, Perejon A, Criado J M. Phys Chem Chem Phys , 2016 . 18 ( 42 ): 29348 - 29360 . DOI:10.1039/C6CP03677Ehttp://doi.org/10.1039/C6CP03677E .
Vyazovkin S, Burnham A K, Criado J M, Perez-Maqueda L A, Popescu C, Sbirrazzuoli N. Thermochim Acta , 2011 . 520 ( 1-2 ): 1 - 19 . DOI:10.1016/j.tca.2011.03.034http://doi.org/10.1016/j.tca.2011.03.034 .
Meng Xiangli(孟祥丽), Wang Dandan(王丹丹), Wang Peng(王鹏). Acta Polymerica Sinica(高分子学报) , 2013 . (2) 154 - 159 . DOI:10.3724/SP.J.1105.2013.12021http://doi.org/10.3724/SP.J.1105.2013.12021 .
Meng X L, Huang Y D, Yu H, Lv Z S. Polym Degrad Stabil , 2007 . 92 ( 6 ): 962 - 967 . DOI:10.1016/j.polymdegradstab.2007.03.005http://doi.org/10.1016/j.polymdegradstab.2007.03.005 .
Tadini P, Grange N, Chetehouna K, Gascoin N, Senave S, Reynaud I. Aerosp Sci Technol , 2017 . 65 106 - 116 . DOI:10.1016/j.ast.2017.02.011http://doi.org/10.1016/j.ast.2017.02.011 .
Tiptipakorn S, Damrongsakkul S, Ando S, Hemvichian K, Rimdusit S. Polym Degrad Stabil , 2007 . 92 ( 7 ): 1265 - 1278 . DOI:10.1016/j.polymdegradstab.2007.03.021http://doi.org/10.1016/j.polymdegradstab.2007.03.021 .
Yoshikawa M, Yamada S, Koga N. J Phys Chem C , 2014 . 118 ( 15 ): 8059 - 8070 . DOI:10.1021/jp501407phttp://doi.org/10.1021/jp501407p .
Yang X Y, Wang X, Zhao B W, Li Y. BioEnergy Res , 2014 . 7 ( 4 ): 1293 - 1304 . DOI:10.1007/s12155-014-9467-zhttp://doi.org/10.1007/s12155-014-9467-z .
Perejon A, Sanchez-Jimenez P E, Criado J M, Perez-Maqueda L A. J Phys Chem B , 2011 . 115 ( 8 ): 1780 - 1791 . DOI:10.1021/jp110895zhttp://doi.org/10.1021/jp110895z .
Yan Q L, Zeman S, Zhang J G, He P, Musila T, Bartoskova M. Phys Chem Chem Phys , 2014 . 16 ( 44 ): 24282 - 24291 . DOI:10.1039/C4CP03479Ahttp://doi.org/10.1039/C4CP03479A .
Koga N, Goshi Y, Yamada S, Perez-Maqueda L A. J Therm Anal Calorim , 2013 . 111 ( 2 ): 1463 - 1474 . DOI:10.1007/s10973-012-2500-6http://doi.org/10.1007/s10973-012-2500-6 .
Perejon A, Sanchez-Jimenez P E, Criado J M, Perez-Maqueda L A. J Phys Chem C , 2014 . 118 ( 45 ): 26387 - 26395 . DOI:10.1021/jp507831jhttp://doi.org/10.1021/jp507831j .
Honcova P, Svoboda R, Pilny P, Sadovska G, Bartak J, Benes L, Honc D. J Therm Anal Calorim , 2016 . 124 ( 1 ): 151 - 158 . DOI:10.1007/s10973-015-5110-2http://doi.org/10.1007/s10973-015-5110-2 .
Taghizadeh M T, Yeganeh N, Rezaei M. J Therm Anal Calorim , 2014 . 118 ( 3 ): 1733 - 1746 . DOI:10.1007/s10973-014-4036-4http://doi.org/10.1007/s10973-014-4036-4 .
Feng Y Z, Li Z Y, Wang Y K, Chen W W, Wang B, Liu C T, Shen C Y. Macromol Mater Eng , 2019 . 304 ( 4 ): 1800667 DOI:10.1002/mame.201800667http://doi.org/10.1002/mame.201800667 .
Rajeshwari P. J Therm Anal Calorim , 2016 . 123 ( 2 ): 1523 - 1544 . DOI:10.1007/s10973-015-5021-2http://doi.org/10.1007/s10973-015-5021-2 .
Butnaru I, Varganici C D, Pinteala M, Lehner S, Bruma M, Gaan S. J Anal Appl Pyrolysis , 2018 . 134 254 - 264 . DOI:10.1016/j.jaap.2018.06.015http://doi.org/10.1016/j.jaap.2018.06.015 .
Garcia-Garrido C, Perez-Maqueda L A, Criado J M, Sanchez-Jimenez P E. Polymer , 2018 . 153 558 - 564 . DOI:10.1016/j.polymer.2018.08.045http://doi.org/10.1016/j.polymer.2018.08.045 .
Stanko M, Stommel M. Polymers , 2018 . 10 ( 7 ): 698 DOI:10.3390/polym10070698http://doi.org/10.3390/polym10070698 .
Vyazovkin S. Macromol Rapid Commun , 2017 . 38 ( 3 ): 1600615 DOI:10.1002/marc.201600615http://doi.org/10.1002/marc.201600615 .
Devnani G L, Sinha S. Compos Pt B-Eng , 2019 . 166 436 - 445 . DOI:10.1016/j.compositesb.2019.02.042http://doi.org/10.1016/j.compositesb.2019.02.042 .
Nair S, Aswathy U V, Mathew A, Raghavan R. J Therm Anal Calorim , 2017 . 128 ( 3 ): 1731 - 1741 . DOI:10.1007/s10973-016-6025-2http://doi.org/10.1007/s10973-016-6025-2 .
Lascano D, Quiles-Carrillo L, Balart R, Boronat T, Montanes N. Polymers , 2019 . 11 ( 3 ): 391 DOI:10.3390/polym11030391http://doi.org/10.3390/polym11030391 .
Koga N. J Therm Anal Calorim , 2013 . 113 ( 3 ): 1527 - 1541 . DOI:10.1007/s10973-012-2882-5http://doi.org/10.1007/s10973-012-2882-5 .
Yoshikawa M, Goshi Y, Yamada S, Koga N. J Phys Chem B , 2014 . 118 ( 38 ): 11397 - 11405 . DOI:10.1021/jp507247xhttp://doi.org/10.1021/jp507247x .
Majoni S, Chaparadza A. Thermochim Acta , 2018 . 662 8 - 15 . DOI:10.1016/j.tca.2018.02.001http://doi.org/10.1016/j.tca.2018.02.001 .
Jankovic B, Adnadevic B. Int J Chem Kinet , 2007 . 39 ( 8 ): 462 - 471 . DOI:10.1002/kin.20256http://doi.org/10.1002/kin.20256 .
Hatori H, Yamada Y, Shiraishi M, Yoshihara M, Kimura T. Carbon , 1996 . 34 ( 2 ): 201 - 208 . DOI:10.1016/0008-6223(96)00189-3http://doi.org/10.1016/0008-6223(96)00189-3 .
Ozawa T, Arii T, Kishi A. Thermochim Acta , 2000 . 352 177 - 180 . DOI:10.1016/S0040-6031(99)00464-5http://doi.org/10.1016/S0040-6031(99)00464-5 .
0
浏览量
37
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构