浏览全部资源
扫码关注微信
1.北京化工大学 化工资源有效利用国家重点实验室 碳纤维及功能高分子教育部重点实验室材料科学与工程学院 北京 100029
2.中国石油石油化工研究院 北京 102206
E-mail: huangqg@mail.buct.edu.cn Qi-Gu Huang, E-mail: huangqg@mail.buct.edu.cn
纸质出版日期:2020-10-21,
网络出版日期:2020-7-20,
收稿日期:2020-4-10,
修回日期:2020-5-11,
扫 描 看 全 文
时子海, 张娇娇, 袁定坤, 张少蒙, 夏晓琪, 高克京, 李红明, 王秋璨, 义建军, 黄启谷, 赵众. 无助催化剂的[N,P]型钛系金属有机催化剂催化乙烯聚合反应研究[J]. 高分子学报, 2020,51(12):1374-1384.
Zi-hai Shi, Jiao-jiao Zhang, Ding-kun Yuan, Shao-meng Zhang, Xiao-qi Xia, Ke-jing Gao, Hong-ming Li, Qiu-can Wang, Jian-jun Yi, Qi-gu Huang, Zhong Zhao. Study on the Organometallic [N,P] Titanium Catalysts for Ethylene Polymerization without Cocatalyst[J]. Acta Polymerica Sinica, 2020,51(12):1374-1384.
时子海, 张娇娇, 袁定坤, 张少蒙, 夏晓琪, 高克京, 李红明, 王秋璨, 义建军, 黄启谷, 赵众. 无助催化剂的[N,P]型钛系金属有机催化剂催化乙烯聚合反应研究[J]. 高分子学报, 2020,51(12):1374-1384. DOI: 10.11777/j.issn1000-3304.2020.20098.
Zi-hai Shi, Jiao-jiao Zhang, Ding-kun Yuan, Shao-meng Zhang, Xiao-qi Xia, Ke-jing Gao, Hong-ming Li, Qiu-can Wang, Jian-jun Yi, Qi-gu Huang, Zhong Zhao. Study on the Organometallic [N,P] Titanium Catalysts for Ethylene Polymerization without Cocatalyst[J]. Acta Polymerica Sinica, 2020,51(12):1374-1384. DOI: 10.11777/j.issn1000-3304.2020.20098.
软硬酸碱理论(HSAB)是由Pearson根据Lewis酸碱电子理论提出来的一种新的酸碱理论,可以用于解释各种化学反应,尤其是在配位化学方面有着较好的应用. 本文合成了6种含有不同结构的新型[N
P]型Ti系催化剂,在不添加助催化剂的条件下催化乙烯聚合,还探讨了乙烯聚合条件,催化剂Cat.
5
的催化活性可达2.83 × 10
5
g
P
∙(mol
M
)
−1
∙h
−1
,得到的聚乙烯的分子量为8.6 × 10
5
g/mol. 6种催化剂催化乙烯聚合所得聚乙烯的分子量分布在2.2 ~ 2.5,熔点均在135 °C左右. 采用HSAB理论对配体、配体与Ti
4+
的反应,以及乙烯单体与催化剂之间的软硬酸碱匹配性进行了探讨,发现与Me和H比较,配体苯胺苯环上取代基为吸电子基团时,得到的聚乙烯分子量更高,催化活性也较高. 密度泛函理论(DFT)计算表明,乙烯单体更容易从中心金属原子的左边与M―C键进行配位、插入反应,Cat.
5
进行乙烯插入时的能垒较低,较易进行乙烯的配位、插入,配体苯胺苯环上引入吸电子基团有利于催化剂活性中心的稳定,获得更高分子量的聚乙烯. 实验数据与软硬酸碱理论和密度泛函理论分析结果接近.
The soft and hard acid-base theory (HSAB) is a new acid-base theory created by Sir. Pearson based on the theory of Lewis acid-base electron. It can be used to explain various chemical reactions
especially in coordination chemistry. In this study
the synthesized Cat.
1
− Cat.
6
[N
P]Ti catalysts containing ligands with electron withdrawing groups were prepared for ethylene polymerization without the addition of cocatalyst. The other optimal conditions for ethylene polymerization were determined through optimizing the polymerization behavior. Cat.
5
with ligand L5 containing tetrafluorobenzene ring showed a catalytic activity of to 2.83 × 10
5
g
P
∙(mol
M
)
−1
∙h
−1
for this polymerization. The obtained polyethylene featured high weight average molecular weight of 8.6 × 10
5
g/mol. The molecular weight distribution of polyethylene obtained by these six catalysts were in 2.2 − 2.5
and the melting point was about 135 °C The reaction mechanism of ethylene polymerization was explored by HSAB. The results showed that when the substituent on the catalyst aniline was an electron withdrawing group
both the polymerization activity and the molecular weight of the obtained polymer were higher. Density Functional Theory (DFT) results indicated that ethylene was more inclined to react with one of the M―C bonds of the catalyst. The energy barrier for the ethylene insertion reaction by Cat.
5
was the lowest
compared to other catalysts except Cat.
1
which made ethylene insertion reaction easier. These ligands containing electron withdrawing groups on aniline ring made the catalytic active species more stable. Much higher molecular weight of polyethylene was produced by utilizing these catalysts with the ligands containing electron withdrawing groups on aniline ring. These experimental results were consistent with those of HSAB and DFT.
[NP]催化剂无助催化剂乙烯聚合软硬酸碱理论密度泛函理论
[NP]Ti catalystsWithout cocatalystEthylene polymerizationSoft and hard acid-base theoryDensity functional theory
Pearson R G. J Am Chem Soc , 1963 . 85 ( 22 ): 3533 - 3539 . DOI:10.1021/ja00905a001http://doi.org/10.1021/ja00905a001 .
Tse-Lok H. Chem Rev , 1975 . 75 ( 1 ): 5 - 17 . DOI:10.1021/cr60293a001http://doi.org/10.1021/cr60293a001 .
Klopman G. J Am Chem Soc , 1968 . 90 ( 2 ): 223 - 234 . DOI:10.1021/ja01004a002http://doi.org/10.1021/ja01004a002 .
Vigneresse J L. Chem Phys , 2014 . 443 87 - 92 . DOI:10.1016/j.chemphys.2014.09.005http://doi.org/10.1016/j.chemphys.2014.09.005 .
Huang Yike(黄一珂), Qiu Xiaohang(邱晓航). University Chemistry(大学化学) , 2016 . 31 ( 11 ): 45 - 50 . DOI:10.3866/pku.DXHX201602004http://doi.org/10.3866/pku.DXHX201602004 .
Wang Y G, Barnes E C, Kaya S, Sharma V. J Comput Chem , 2019 . 40 2761 - 2777 . DOI:10.1002/jcc.26052http://doi.org/10.1002/jcc.26052 .
Rosenberg M G, Brinker, U H. J Org Chem , 2019 . 84, 18 11873 - 11884 . DOI:10.1021/acs.joc.9b01732http://doi.org/10.1021/acs.joc.9b01732 .
Parr R G, Pearson R G. J Am Chem Soc , 1983 . 105 ( 26 ): 7512 DOI:10.1021/ja00364a005http://doi.org/10.1021/ja00364a005 .
Delchev Y, Kuleff A, Maruani J, Mineva T, Zahariev F. Springer, 2006, 15. Dordrecht.
Johnson L K, Killian C M, Brookhart M. J Am Chem Soc , 1995 . 117 ( 23 ): 6414 - 6415 . DOI:10.1021/ja00128a054http://doi.org/10.1021/ja00128a054 .
Killian C M, Tempel D J, Johnson L K, Brookhart M. J Am Chem Soc , 1996 . 118 ( 46 ): 11664 - 11665 . DOI:10.1021/ja962516hhttp://doi.org/10.1021/ja962516h .
Brookhart M. Organometallics , 1999 . 18 ( 1 ): 65 - 74 . DOI:10.1021/om980736thttp://doi.org/10.1021/om980736t .
Mu H L, Pan L, Song D P, Li Y S. Chem Rev , 2015 . 115 12091 - 12137 . DOI:10.1021/cr500370fhttp://doi.org/10.1021/cr500370f .
Sun Xiuli(孙秀丽), Tang Yong(唐勇). Acta Polymerica Sinica(高分子学报) , 2017 . ( 7 ): 1019 - 1037 . DOI:10.11777/j.issn1000-3304.2017.17033http://doi.org/10.11777/j.issn1000-3304.2017.17033 .
Jian Zhongbao(简忠保). Acta Polymerica Sinica(高分子学报) , 2018 . ( 11 ): 1359 - 1371 . DOI:10.11777/j.issn1000-3304.2018.18146http://doi.org/10.11777/j.issn1000-3304.2018.18146 .
Wang J, Li H M, He L, Huang Q G, Yang W T. Elastomer , 2016 . 26 ( 6 ): 83 - 90.
Chen Min(陈敏), Chen Changle(陈昶乐). Acta Polymerica Sinica(高分子学报) , 2018 . ( 11 ): 1372 - 1384 . DOI:10.11777/j.issn1000-3304.2018.18155http://doi.org/10.11777/j.issn1000-3304.2018.18155 .
Mitani M, Mohri J, Yoshida Y, Fujita T. J Am Chem Soc , 2002 . 124 ( 13 ): 3327 - 33368 . DOI:10.1021/ja0117581http://doi.org/10.1021/ja0117581 .
Hu W Q, Sun X L, Wang C, Gao Y, Tang Y, Shi L P, Xia W, Sun J, Dai H L, Li X Q, Yao X L, Wang X R. Organometallics , 2004 . 23 ( 8 ): 1684 - 1688 . DOI:10.1021/om0303808http://doi.org/10.1021/om0303808 .
Redshaw C, Tang Y. Cheminform , 2012 . 43 ( 34 ): 4484 - 4510.
Cong W, Sun X L, Guo Y H, Gao Y, Liu B, Ma Z, Xia W, Shi L P, Tang Y. Rapid Commun , 2005 . 26 ( 20 ): 1609 - 1614 . DOI:10.1002/marc.200500403http://doi.org/10.1002/marc.200500403 .
Yang X H, Liu C R, Wang C, Sun X L, Guo Y H, Wang X K, Wang Z, Xie Z W, Tang Y. Angew Chem Int Ed , 2009 . 48 ( 43 ): 8099 - 8102 . DOI:10.1002/anie.200903334http://doi.org/10.1002/anie.200903334 .
Chen Z, Li J F, Tao W J, Sun X L, Yang X H, Tang Y. Macromolecules , 2013 . 46 ( 46 ): 2870 - 2875.
Yoshida Y, Matsui S, Fujita T. J Organomet Chem , 2005 . 690 ( 20 ): 4382 - 4397 . DOI:10.1016/j.jorganchem.2005.01.038http://doi.org/10.1016/j.jorganchem.2005.01.038 .
Quan H Tran, Daugulis O, Brookhart M. J Am Chem Soc , 2020 . 142 7198 - 7206 . DOI:10.1021/jacs.0c02045http://doi.org/10.1021/jacs.0c02045 .
Zhang X L, Liu Z, Yi J J, Li F J, Huang H B, Liu W, Zhen H P, Huang Q G, Gao K J, Yang W T. J Polym Sci, Part A: Polym Chem , 2012 . 50 ( 10 ): 2068 - 2074 . DOI:10.1002/pola.25981http://doi.org/10.1002/pola.25981 .
Wang J, Zhang X L, Liu Z, Zhou Y, Huang Q G, Yang W T. J Appl Polym Sci , 2015 . 132 ( 28 ): 42225 .
Wang J, Nan F, Guo J P, Wang J, Shi X H, Huang H B, Huang Q G, Yang W T. Catal Lett , 2016 . 146 609 - 619 . DOI:10.1007/s10562-015-1686-1http://doi.org/10.1007/s10562-015-1686-1 .
Wang J, He L, Nan F, Wang F, Li H M, Wang J J, Liu D, Lei M, Li L F, Huang Q G, Yang W T. J Mater Sci , 2017 . 52 5981 - 5991 . DOI:10.1007/s10853-017-0834-yhttp://doi.org/10.1007/s10853-017-0834-y .
Huang Qigu(黄启谷), Huang Haibing(黄海兵), Guo Jiangping(郭江平), Fan Meng(樊濛), Li Fengjiao(李凤娇), Cheng Lu(程璐), Liu Zhi(刘智), Liu Wei(刘伟), Yang Wantai(杨万泰). CN patent, 201310108975.1. 2013-03-31.
Wang Qiucan(王秋璨), Zhou Yang(周阳), Zhang Jiaojiao(张娇娇), Yu Hongchao(于洪超), Zhang Shaomeng(张少蒙), Fu Yao(付瑶), Shi Zihai(时子海), Li Hongming(李红明), Xia Bihua(夏碧华), Huang Qigu(黄启谷). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 2 ): 124 - 134 . DOI:10.11777/j.issn1000-3304.2018.18187http://doi.org/10.11777/j.issn1000-3304.2018.18187 .
Wang Fan(王帆), Shi Xianghui(石向辉), Nan Feng(南枫), Li Hongming(李红明), Wang Qiucan(王秋璨), Yu Hongchao(于洪超), Huang Qigu(黄启谷), Yang Wantai(杨万泰). Science China(Chemistry)(中国科学: 化学) , 2018 . 48 ( 5 ): 609 - 619 . DOI:10.1360/N032017-00199http://doi.org/10.1360/N032017-00199 .
Philip K, Stefan M. J Am Chem Soc , 2017 . 139 ( 39 ): 13786 DOI:10.1021/jacs.7b06745http://doi.org/10.1021/jacs.7b06745 .
Laura F, Thomas W, Inigo G S, Lucia C, Luigi C, Stefan M. J Am Chem Soc , 2018 . 140 ( 4 ): 1305 DOI:10.1021/jacs.7b08975http://doi.org/10.1021/jacs.7b08975 .
0
浏览量
34
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构