浏览全部资源
扫码关注微信
天津大学材料科学与工程学院 天津 300350
[ "李悦生,男,1960年生. 天津大学材料学院教授,博士生导师. 1992年于中国科学院长春应用化学研究所获理学博士学位. 1997年1月 ~ 2014年7月就职于中国科学院长春应用化学研究所,任研究员. 2014年调入天津大学材料学院. 主要从事聚合反应新催化剂和新方法、高分子材料可控制备等研究工作. 曾先后获得中国科学院“百人计划”项目和国家杰出青年基金项目资助、中国科学院-拜耳青年科学家奖、中国科学院-朱李月华优秀教师奖、中国石油与化学工业联合会科技进步一等奖等" ]
纸质出版日期:2020-9-1,
网络出版日期:2020-8-19,
收稿日期:2020-4-27,
修回日期:2020-5-18,
扫 描 看 全 文
王彬, 季鹤源, 李悦生. Lewis Pairs催化环酯开环聚合与环酐/环氧化物开环交替共聚[J]. 高分子学报, 2020,51(10):1104-1120.
Bin Wang, He-yuan Ji, Yue-sheng Li. Lewis Pairs Catalytic Ring-opening Polymerization of Cyclic Ester and Ring-opening Alternating Copolymerization of Cyclic Anhydride/Epoxide[J]. Acta Polymerica Sinica, 2020,51(10):1104-1120.
王彬, 季鹤源, 李悦生. Lewis Pairs催化环酯开环聚合与环酐/环氧化物开环交替共聚[J]. 高分子学报, 2020,51(10):1104-1120. DOI: 10.11777/j.issn1000-3304.2020.20111.
Bin Wang, He-yuan Ji, Yue-sheng Li. Lewis Pairs Catalytic Ring-opening Polymerization of Cyclic Ester and Ring-opening Alternating Copolymerization of Cyclic Anhydride/Epoxide[J]. Acta Polymerica Sinica, 2020,51(10):1104-1120. DOI: 10.11777/j.issn1000-3304.2020.20111.
近年来,路易斯酸碱对(Lewis pairs)催化聚合已成为高分子化学领域的研究热点之一,受到人们的广泛关注. 利用Lewis pairs催化环酯开环聚合以及环酐/环氧化物开环交替共聚,为合成新型聚酯材料以及聚酯的化学改性提供了简便快捷方法. Lewis 酸和Lewis碱的协同作用不仅提高了催化活性,同时亦可提高单体选择性和开环反应的立体选择性. 本专论总结了近几年课题组在利用Lewis pairs 催化合成环境友好高分子材料方面的研究进展,分析了Lewis pairs催化环酯开环聚合和环酐/环氧化合物开环交替共聚的聚合机理,论述了Lewis pairs结构—催化活性—单体选择性/开环立体化学之间的关系,阐述了混合单体“自切换”聚合制备序列可控脂肪族或半芳香族聚酯材料的新方法,深入讨论了Lewis pairs催化开环聚合的发展前景.
In recent years
Lewis pairs catalytic polymerization (LPP) has become one of the hot topics and attracted much attention in the field of polymer chemistry. Some exciting results were reported in polymer synthesis by using Lewis pairs
especially in the addition polymerization of polar vinyl monomers. Great successes were also achieved in the ring-opening polymerization (ROP) of cyclic esters and ring-opening alternating copolymerization (ROAC) of cyclic anhydrides/epoxides catalyzed by Lewis pairs
which provides a relatively simple and efficient approach for synthesizing polyesters with diverse structure and chemical modification of polyester materials. The synergistic effect between Lewis acid and Lewis base significantly improved the catalytic activity as well as the monomer adaptability. This work reviews the recent progress on Lewis pairs catalytic ROP and ROAC in our research group. We discussed the polymerization mechanisms
polymerization behaviors
and the relationships between structures of catalyst and catalytic performance in the ROP and ROAC catalyzed by Lewis pairs. The methodology was also introduced for construction of sequence-controlled polyesters by chemo-selective polymerization of mixed monomer feedstocks. Finally
novel Lewis pairs catalytic systems and methodologies were prospected for the stereo-selective polymerization of racemic monomer and the copolymerization of cyclic anhydrides and epoxides with five-membered rings such as tetrahydrofuran and 2-methyltetrahydrofuran.
脂肪族聚酯路易斯酸碱对开环聚合开环交替共聚环境友好高分子
Aliphatic polyestersLewis pairsRing-opening polymerizationRing-opening alternating copolymerizationEnvironment-friendly
Ragauskas A J, Williams C K, Davison B H, Bitovsek G, Cairney J, Eckert C A, Frederick W J J, Hallett J P, Leak D J, Liotta C L, Mielenz J R, Murphy R, Templer R, Tschaplinski T, Science, 2006, 311(5760): 484 − 489
Yuan Pengjun(袁鹏俊), Hong Miao(洪缪). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 4 ): 327 - 337 . DOI:10.11777/j.issn1000-3304.2018.18232http://doi.org/10.11777/j.issn1000-3304.2018.18232 .
Thomas C M. Chem Soc Rev , 2010 . 39 ( 1 ): 165 - 173 . DOI:10.1039/B810065Ahttp://doi.org/10.1039/B810065A .
Sarazin Y, Carpentier J F. Chem Rev , 2015 . 115 ( 9 ): 3564 - 3614 . DOI:10.1021/acs.chemrev.5b00033http://doi.org/10.1021/acs.chemrev.5b00033 .
Dove A P. ACS Macro Lett , 2012 . 1 ( 12 ): 1409 - 1412 . DOI:10.1021/mz3005956http://doi.org/10.1021/mz3005956 .
Kamber N E, Jeong W, Waymouth R M, Pratt R C, Lohmeijer B G G, Hedrick J L. Chem Rev , 2007 . 107 ( 12 ): 5813 - 5840 . DOI:10.1021/cr068415bhttp://doi.org/10.1021/cr068415b .
Li H, Ai B, Hong M. Chinese J Polym Sci , 2018 . 36 231 - 236 . DOI:10.1007/s10118-018-2071-5http://doi.org/10.1007/s10118-018-2071-5 .
Zhang X, Jones G O, Hedrick J L, Waymouth R M. Nat Chem , 2016 . 8 ( 11 ): 1047 - 1053 . DOI:10.1038/nchem.2574http://doi.org/10.1038/nchem.2574 .
Lin L, Han D, Qin J, Wang S, Xiao M, Sun L, Meng Y. Macromolecules , 2018 . 51 ( 22 ): 9317 - 9322 . DOI:10.1021/acs.macromol.8b01860http://doi.org/10.1021/acs.macromol.8b01860 .
Lin B, Waymouth R M. Macromolecules , 2018 . 51 ( 8 ): 2932 - 2938 . DOI:10.1021/acs.macromol.8b00540http://doi.org/10.1021/acs.macromol.8b00540 .
Lohmeijer B G G, Pratt R C, Leibfarth F, Logan J W, Long D A, Dove A P, Nederberg F, Choi J, Wade C, Waymouth R M, Hedrick J L. Macromolecules , 2006 . 39 ( 25 ): 8574 - 8583 . DOI:10.1021/ma0619381http://doi.org/10.1021/ma0619381 .
Hu L F, Zhang C J, Wu H L, Yang J L, Liu B, Duan H Y, Zhang X H. Macromolecules , 2018 . 51 ( 8 ): 3126 - 3134 . DOI:10.1021/acs.macromol.8b00499http://doi.org/10.1021/acs.macromol.8b00499 .
Zhu J B, Chen E Y X. J Am Chem Soc , 2015 . 137 ( 39 ): 12506 - 12509 . DOI:10.1021/jacs.5b08658http://doi.org/10.1021/jacs.5b08658 .
Naumann S, Scholten P B V, Wilson J A, Dove A P. J Am Chem Soc , 2015 . 137 ( 45 ): 14439 - 14445 . DOI:10.1021/jacs.5b09502http://doi.org/10.1021/jacs.5b09502 .
Piedra-Arroni E, Ladavière C, Amgoune A, Bourissou D. J Am Chem Soc , 2013 . 135 ( 36 ): 13306 - 13309 . DOI:10.1021/ja4069968http://doi.org/10.1021/ja4069968 .
Walther P, Naumann S. Macromolecules , 2017 . 50 ( 21 ): 8406 - 8416 . DOI:10.1021/acs.macromol.7b01678http://doi.org/10.1021/acs.macromol.7b01678 .
Hong M, Chen J, Chen E Y X. Chem Rev , 2018 . 118 ( 20 ): 10551 - 10616 . DOI:10.1021/acs.chemrev.8b00352http://doi.org/10.1021/acs.chemrev.8b00352 .
Zhang Y, Miyake G M, John M G, Falivene L, Caporaso L, Cavallo L, Chen E Y X. Dalton T , 2012 . 41 ( 30 ): 9119 - 9134 . DOI:10.1039/c2dt30427ahttp://doi.org/10.1039/c2dt30427a .
Kreitner C, Geier S J, Stanlake L J E, Caputo C B, Stephan D W. Dalton T , 2011 . 40 ( 25 ): 6771 - 6777 . DOI:10.1039/c1dt10449ghttp://doi.org/10.1039/c1dt10449g .
Stephan D W, Erker G. Angew Chem Int Ed , 2015 . 54 ( 22 ): 6400 - 6441 . DOI:10.1002/anie.201409800http://doi.org/10.1002/anie.201409800 .
Wang Q, Zhao W, He J, Zhang Y, Chen E Y X. Macromolecules , 2017 . 50 ( 1 ): 123 - 136 . DOI:10.1021/acs.macromol.6b02398http://doi.org/10.1021/acs.macromol.6b02398 .
Culkin D A, Jeong W, Csihony S, Gomez E D, Balsara N P, Hedrick J L, Waymouth R M. Angew Chem Int Ed , 2007 . 46 ( 15 ): 2627 - 2630 . DOI:10.1002/anie.200604740http://doi.org/10.1002/anie.200604740 .
Brown H A, Waymouth R M. Acc Chem Res , 2013 . 46 ( 11 ): 2585 - 2596 . DOI:10.1021/ar400072zhttp://doi.org/10.1021/ar400072z .
Shin E J, Brown H A, Gonzalez S, Jeong W, Hedrick J L, Waymouth R M. Angew Chem Int Ed , 2011 . 50 ( 28 ): 6388 - 6391 . DOI:10.1002/anie.201101853http://doi.org/10.1002/anie.201101853 .
Xu T, Chen E Y X. J Am Chem Soc , 2014 . 136 ( 5 ): 1774 - 1777 . DOI:10.1021/ja412445nhttp://doi.org/10.1021/ja412445n .
Bai Yun(白云), Zhang Yuetao(张越涛). Acta Polymerica Sinica(高分子学报) , 2019 . 50 ( 3 ): 233 - 246 . DOI:10.11777/j.issn1000-3304.2019.18269http://doi.org/10.11777/j.issn1000-3304.2019.18269 .
Li X Q, Wang B, Ji H Y, Li Y S. Catal Sci Technol , 2016 . 6 ( 21 ): 7763 - 7772 . DOI:10.1039/C6CY01587Ehttp://doi.org/10.1039/C6CY01587E .
He J, Zhang Y, Falivene L, Caporaso L, Cavallo L, Chen E Y X. Macromolecules , 2014 . 47 ( 22 ): 7765 - 7774 . DOI:10.1021/ma5019389http://doi.org/10.1021/ma5019389 .
Wang Q, Zhao W, Zhang S, He J, Zhang Y, Chen E Y X. ACS Catal , 2018 . 8 ( 4 ): 3571 - 3578 . DOI:10.1021/acscatal.8b00333http://doi.org/10.1021/acscatal.8b00333 .
Wang B, Wei Y, Li Z J, Pan L, Li Y S. ChemCatChem , 2018 . 10 ( 22 ): 5287 - 5296 . DOI:10.1002/cctc.201801488http://doi.org/10.1002/cctc.201801488 .
Haider T, Shyshov O, Suraeva O, Lieberwirth I, von Delius M, Wurm F R. Macromolecules , 2019 . 52 ( 6 ): 2411 - 2420 . DOI:10.1021/acs.macromol.9b00180http://doi.org/10.1021/acs.macromol.9b00180 .
Ortmann P, Mecking S. Macromolecules , 2013 . 46 ( 18 ): 7213 - 7218 . DOI:10.1021/ma401305uhttp://doi.org/10.1021/ma401305u .
Pepels M P F, Hansen M R, Goossens H, Duchateau R. Macromolecules , 2013 . 46 ( 19 ): 7668 - 7677 . DOI:10.1021/ma401403xhttp://doi.org/10.1021/ma401403x .
Hodge P. Chem Rev , 2014 . 114 ( 4 ): 2278 - 2312 . DOI:10.1021/cr400222phttp://doi.org/10.1021/cr400222p .
Bouyahyi M, Duchateau R. Macromolecules , 2014 . 47 ( 2 ): 517 - 524 . DOI:10.1021/ma402072thttp://doi.org/10.1021/ma402072t .
Jasinska-Walc L, Bouyahyi M, Rozanski A, Graf R, Hansen M R, Duchateau R. Macromolecules , 2015 . 48 ( 3 ): 502 - 510 . DOI:10.1021/ma502262ehttp://doi.org/10.1021/ma502262e .
Ladelta V, Kim J D, Bilalis P, Gnanou Y, Hadjichristidis N. Macromolecules , 2018 . 51 ( 7 ): 2428 - 2436 . DOI:10.1021/acs.macromol.8b00153http://doi.org/10.1021/acs.macromol.8b00153 .
Zhao N, Ren C, Shen Y, Liu S, Li Z. Macromolecules , 2019 . 52 ( 3 ): 1083 - 1091 . DOI:10.1021/acs.macromol.8b02690http://doi.org/10.1021/acs.macromol.8b02690 .
Wang B, Pan L, Ma Z, Li Y. Macromolecules , 2018 . 51 ( 3 ): 836 - 845 . DOI:10.1021/acs.macromol.7b02378http://doi.org/10.1021/acs.macromol.7b02378 .
Longo J M, Sanford M J, Coates G W. Chem Rev , 2016 . 116 ( 24 ): 15167 - 15197 . DOI:10.1021/acs.chemrev.6b00553http://doi.org/10.1021/acs.chemrev.6b00553 .
Hosseini Nejad E, van Melis C G W, Vermeer T J, Koning C E, Duchateau R. Macromolecules , 2012 . 45 ( 4 ): 1770 - 1776 . DOI:10.1021/ma2025804http://doi.org/10.1021/ma2025804 .
Fieser M E, Sanford M J, Mitehell L A, Dunbar C R, Mandal M, van Zee N J, Urness D M, Cramer C T, Coates G W, Tolman W B. J Am Chem Soc , 2017 . 139 ( 42 ): 15222 - 15231 . DOI:10.1021/jacs.7b09079http://doi.org/10.1021/jacs.7b09079 .
Abel B A, Lidston C A L, Coates G W. J Am Chem Soc , 2019 . 141 ( 32 ): 12760 - 12769 . DOI:10.1021/jacs.9b05570http://doi.org/10.1021/jacs.9b05570 .
Ji H Y, Wang B, Pan L, Li Y S. Green Chem , 2018 . 20 ( 3 ): 641 - 648 . DOI:10.1039/C7GC03261Ghttp://doi.org/10.1039/C7GC03261G .
Ji H Y, Chen X L, Wang B, Pan L, Li Y S. Green Chem , 2018 . 20 ( 17 ): 3963 - 3973 . DOI:10.1039/C8GC01641Khttp://doi.org/10.1039/C8GC01641K .
Han B, Liu B, Ding H, Duan Z, Wang X, Theato P. Macromolecules , 2017 . 50 ( 23 ): 9207 - 9215 . DOI:10.1021/acs.macromol.7b01905http://doi.org/10.1021/acs.macromol.7b01905 .
Wu G P, Darensbourg D J, Lu X B. J Am Chem Soc , 2012 . 134 ( 42 ): 17739 - 17745 . DOI:10.1021/ja307976chttp://doi.org/10.1021/ja307976c .
Liu Y, Guo J Z, Lu H W, Wang H B, Lu X B. Macromolecules , 2018 . 51 ( 3 ): 771 - 778 . DOI:10.1021/acs.macromol.7b02042http://doi.org/10.1021/acs.macromol.7b02042 .
Jeske R C, Rowley J M, Coates G W. Angew Chem Int Ed , 2008 . 47 ( 32 ): 6041 - 6044 . DOI:10.1002/anie.200801415http://doi.org/10.1002/anie.200801415 .
Chen T T D, Zhu Y, Williams C K. Macromolecules , 2018 . 51 ( 14 ): 5346 - 5351 . DOI:10.1021/acs.macromol.8b01224http://doi.org/10.1021/acs.macromol.8b01224 .
Harrold N D, Li Y, Chisholm M H. Macromolecules , 2013 . 46 ( 3 ): 692 - 698 . DOI:10.1021/ma302492phttp://doi.org/10.1021/ma302492p .
Stößer T, Mulryan D, Williams C K. Angew Chem Int Ed , 2018 . 57 ( 51 ): 16893 - 16897 . DOI:10.1002/anie.201810245http://doi.org/10.1002/anie.201810245 .
Stößer T, Williams C K. Angew Chem Int Ed , 2018 . 57 ( 21 ): 6337 - 6341 . DOI:10.1002/anie.201801400http://doi.org/10.1002/anie.201801400 .
Zhou Y, Hu C, Zhang T, Xu X, Duan R, Luo Y, Sun Z, Pang X, Chen X. Macromolecules , 2019 . 52 ( 9 ): 3462 - 3470 . DOI:10.1021/acs.macromol.9b00001http://doi.org/10.1021/acs.macromol.9b00001 .
Li Y, Hong J, Wei R, Zhang Y, Tong Z, Zhang X, Du B, Fan Z.. Chem Sci , 2015 . 6 ( 2 ): 1530 - 1536 . DOI:10.1039/C4SC03593Chttp://doi.org/10.1039/C4SC03593C .
Li H, Luo H, Zhao J, Zhang G. ACS Macro Lett , 2018 . 7 ( 12 ): 1420 - 1425 . DOI:10.1021/acsmacrolett.8b00865http://doi.org/10.1021/acsmacrolett.8b00865 .
Liu S, Bai T, Ni K, Chen Y, Zhao J, Ling J, Ye X, Zhang G. Angew Chem Int Ed , 2019 . 58 ( 43 ): 15478 - 15487 . DOI:10.1002/anie.201908904http://doi.org/10.1002/anie.201908904 .
Teator A J, Lastovickova D N, Bielawski C W. Chem Rev , 2016 . 116 ( 4 ): 1969 - 1992 . DOI:10.1021/acs.chemrev.5b00426http://doi.org/10.1021/acs.chemrev.5b00426 .
Eisenreich F, Kathan M, Dallmann A, Ihrig S P, Schwaar T, Schmidt B M, Hecht S. Nature Catal , 2018 . 1 ( 7 ): 516 - 522 . DOI:10.1038/s41929-018-0091-8http://doi.org/10.1038/s41929-018-0091-8 .
Chen C. ACS Catal , 2018 . 8 ( 6 ): 5506 - 5514 . DOI:10.1021/acscatal.8b01096http://doi.org/10.1021/acscatal.8b01096 .
Wei J, Diaconescu P L. Acc Chem Res , 2019 . 52 ( 2 ): 415 - 424 . DOI:10.1021/acs.accounts.8b00523http://doi.org/10.1021/acs.accounts.8b00523 .
Ji H Y, Wang B, Pan L, Li Y S. Angew Chem Int Ed , 2018 . 57 ( 51 ): 16888 - 16892 . DOI:10.1002/anie.201810083http://doi.org/10.1002/anie.201810083 .
Ji H Y, Song D P, Wang B, Pan L, Li Y S. Green Chem , 2019 . 21 ( 22 ): 6123 - 6132 . DOI:10.1039/C9GC02429Hhttp://doi.org/10.1039/C9GC02429H .
0
浏览量
131
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构