浏览全部资源
扫码关注微信
1.哈尔滨工程大学材料科学与化学工程学院 伪装隐身技术与工程研究院 哈尔滨 150001
2.山东科技大学材料科学与工程学院 青岛 266590
E-mail: yzw-qd@hrbeu.edu.cn Zhi-wei Yu, E-mail: yzw-qd@hrbeu.edu.cn
纸质出版日期:2021-1-3,
网络出版日期:2020-8-10,
收稿日期:2020-5-14,
修回日期:2020-6-15,
扫 描 看 全 文
郑鹏轩, 王向伟, 王栋, 于志伟. 基于聚乙二醇接枝丙烯酸树酯光固化电解质的制备及性能研究[J]. 高分子学报, 2021,52(1):94-101.
Peng-xuan Zheng, Xiang-wei Wang, Dong Wang, Zhi-wei Yu. Preparation and Properties of Photo-cured Electrolyte Based on Poly(ethylene glycol) Grafted Acrylic Resin[J]. Acta Polymerica Sinica, 2021,52(1):94-101.
郑鹏轩, 王向伟, 王栋, 于志伟. 基于聚乙二醇接枝丙烯酸树酯光固化电解质的制备及性能研究[J]. 高分子学报, 2021,52(1):94-101. DOI: 10.11777/j.issn1000-3304.2020.20121.
Peng-xuan Zheng, Xiang-wei Wang, Dong Wang, Zhi-wei Yu. Preparation and Properties of Photo-cured Electrolyte Based on Poly(ethylene glycol) Grafted Acrylic Resin[J]. Acta Polymerica Sinica, 2021,52(1):94-101. DOI: 10.11777/j.issn1000-3304.2020.20121.
聚氧化乙烯(PEO)(聚乙二醇(PEG))和丙烯酸树脂在聚合物基电解质中具有很好的应用,本文通过紫外光引发单/双官能度的聚乙二醇接枝丙烯酸树脂单体聚合构建了离子电导率高、易于封装,可避免电解质泄漏的准固态聚合物电解质. 通过调控聚乙二醇二甲基丙烯酸酯(PEGDA)和甲氧基聚乙二醇单甲基丙烯酸酯(PEGMA) 2种单体的比例以及锂盐溶液的含量,成功制备出具有高离电导率的准固态聚合物电解质. 采用傅里叶变换红外光谱仪(FTIR),电化学工作站对PEGMA/PEGDA基聚合物电解质进行表征,研究各组分比例对电解质的电化学性能影响. 当PEGMA/PEGDA单体比例为75/25,锂盐溶液的占比为75%时,形成的薄膜状态电解质表现出1.96×10
−3
S·cm
−1
的高离子电导率,较原始配比提高了14倍. 将制备的电解质应用于电致变色器件,在580个变色循环后,器件依然可以实现稳定快速的颜色切换,2种颜色变换时间均在3 s以内,本文中研究的聚醚接枝丙烯酸树酯基电解质材料在电致变色器件中有较好的应用前景.
Poly(ethylene oxide) (PEO) (poly(ethylene glycol) (PEG)) grafted acrylic resin had been widely used as polymer electrolytes. In this paper
quasi-solid polymer electrolytes (QSPE) with high conductivity were prepared and studied by UV-curing of poly(ethylene glycol dimethacrylate) (PEGDA) and methoxypolyethylene glycol methacrylate (PEGMA). The electrolytes could be easy to be fabricated into membranes and simply encapsulated in electrochemical devices
espacially in electrochromic devices (EDCs). The process of the PEGDA and PEGMA polymerization was mainly confirmed by Fourier-transform infrared spectroscopy (FTIR). The electrochemical performance of the electrolytes was characterized by an electrochemical workstation
and the ion conductivities with the various concentrations of liquid electrolyte and weight ratios of monomers were investigated. When the content of lithium salt solution was 75% and the weight ratio of PEGMA to PEGDA was 75:25
the ionic conductivity of the electrolytes reached 1.96×10
−3
S·cm
−1
which was 14 times higher than that of the original. In order to verify its application performance
electrochromic devices was assembled with the obtained electrolyte membrane as an ion transport layer and exhibited high efficiency of color changes. The EDCs still exhibited stable and reversible color switching between gray blue and bright yellow even after 580 cycles
and the response time was less than 3 s. Because of its good electrochemical property and easy encapsulating
the electrolytes based on polyether grafted acrylic resins also held extensive prospects in other electrochemical devices.
聚醚接枝丙烯酸树脂光固化准固态聚合物电解质电致变色
PEG grafted acrylic resinUV polymerizationQSPEElectrochromism
Angulakshmi N, Nahm K S, Nair J R, Gerbaldi C, Bongiovanni R, Penazzi N, Stephan A M. Electrochimica Acta , 2013 . 90 179 - 185 . DOI:10.1016/j.electacta.2012.12.003http://doi.org/10.1016/j.electacta.2012.12.003 .
Puthirath A, Patra S, Pal S, M M, Puthirath Balan A, S J, Tharangattu N N. J Mater Chem A , 2017 . 5 ( 22 ): 11152 - 11162 . DOI:10.1039/C7TA02182Hhttp://doi.org/10.1039/C7TA02182H .
Bella F, Bongiovanni R, Kumar R S, Kulandainathan M A, Stephan A M. J Mater Chem A , 2013 . 1 ( 32 ): 9033 DOI:10.1039/c3ta12135fhttp://doi.org/10.1039/c3ta12135f .
Bella F, Lamberti A, Sacco A, Bianco S, Chiodoni A, Bongiovanni R. J Membr Sci , 2014 . 470 125 - 131 . DOI:10.1016/j.memsci.2014.07.020http://doi.org/10.1016/j.memsci.2014.07.020 .
Choi K H, Yoo A J, Lee C K, Lee S Y. Energy Environ Sci , 2016 . 9 ( 9 ): 2812 - 2821 . DOI:10.1039/C6EE00966Bhttp://doi.org/10.1039/C6EE00966B .
Alves R, Sentanin F, Sabadini R C, Fernandes M, De Z B V, Pawlicka A, Silva M M. Electrochimica Acta , 2018 . 267 51 - 62 . DOI:10.1016/j.electacta.2018.02.044http://doi.org/10.1016/j.electacta.2018.02.044 .
Sun Tong(孙通), Liao Xiaoxia(李晓霞), Guo Yuxiang(郭宇翔). Ordnance Material Science and Engineering(兵器材料科学与工程) , 2012 . 35 ( 4 ): 103 - 108 . DOI:10.3969/j.issn.1004-244X.2012.04.030http://doi.org/10.3969/j.issn.1004-244X.2012.04.030 .
Wolynes P G. Annual Rev Phys Chem , 2003 . 31 ( 1 ): 345 - 376.
Kong X B, Zhou R, Wang J, Zhao J B. ACS Appl Energy Mater , 2019 . 2, 7 4683 - 4691.
Wang Q S, Jiang L H, Yu Y, Sun J H. Nano Energy , 2019 . 55 93 - 114 . DOI:10.1016/j.nanoen.2018.10.035http://doi.org/10.1016/j.nanoen.2018.10.035 .
Liang J N, Luo J, Sun Q, Yang X F, Li R Y, Sun X L. Energy Storage Mater , 2019 . 21 308 - 334 . DOI:10.1016/j.ensm.2019.06.021http://doi.org/10.1016/j.ensm.2019.06.021 .
Dong Tiantian(董甜甜), Zhang Jianjun(张建军), Chai Jingchao(柴敬超), Jia Qingming(贾庆明), Cui Guanglei(崔光磊). Acta Polymerica Sinica(高分子学报) , 2017 . ( 6 ): 906 - 921 . DOI:10.11777/j.issn1000-3304.2017.16333http://doi.org/10.11777/j.issn1000-3304.2017.16333 .
Chen S M, Wen K H, Fan J T, Bando Y, Golbergce D. J Mater Chem A , 2018 . 6 ( 25 ): 11631 - 11663 . DOI:10.1039/C8TA03358Ghttp://doi.org/10.1039/C8TA03358G .
Fan L, Wei S Y, Li S Y, Li Q, Lu Y. Adv Energy Mater , 2018 . 8 ( 11 ): 1702657 DOI:10.1002/aenm.201702657http://doi.org/10.1002/aenm.201702657 .
Zhou Q, Dong S M, Lv Z L, Xu G J, Huang L, Wang Q L, Cui Z L, Cui G L. Adv Energy Mater , 2020 . 10 ( 6 ): 1903441 DOI:10.1002/aenm.201903441http://doi.org/10.1002/aenm.201903441 .
Zhang J J, Zhao J H, Yue L P, Wang Q F, Chai J C, Liu Z H, Zhou X H, Li H, Guo Y G, Cui G L. Adv Energy Mater , 2015 . 5 ( 24 ): 1501082 DOI:10.1002/aenm.201501082http://doi.org/10.1002/aenm.201501082 .
Knauth P. Solid State Ionics , 2009 . 180 ( 14~16 ): 911 - 916 . DOI:10.1016/j.ssi.2009.03.022http://doi.org/10.1016/j.ssi.2009.03.022 .
Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S Lamp P. Chem Rev , 2016 . 116 ( 1 ): 140 - 162 . DOI:10.1021/acs.chemrev.5b00563http://doi.org/10.1021/acs.chemrev.5b00563 .
Cao C, Li Z B, Wang X L, Zhao X B, Han W Q. Front Energy Res , 2014 . 2 25 DOI:10.3389/fenrg.2014.00025http://doi.org/10.3389/fenrg.2014.00025 .
Dweiri R, Sahari J. J Power Sources , 2007 . 171 ( 2 ): 424 - 432 . DOI:10.1016/j.jpowsour.2007.05.106http://doi.org/10.1016/j.jpowsour.2007.05.106 .
Liao S H, Yen C Y, Weng C C, Lin Y F, Yang C H, Tsai M C, Yen M Y, Hsiao M C, Xie X F, Hsiao Y H. J Power Sources , 2008 . 185 ( 2 ): 1225 - 1232 . DOI:10.1016/j.jpowsour.2008.06.097http://doi.org/10.1016/j.jpowsour.2008.06.097 .
Peramunage D, Abraham K. J Electrochem Soc , 1998 . 145 ( 8 ): 2609 DOI:10.1149/1.1838689http://doi.org/10.1149/1.1838689 .
Jung H R, Ju D H, Lee W J, Zhang X, Kotek R. Electrochimica Acta , 2009 . 54 ( 13 ): 3630 - 3637 . DOI:10.1016/j.electacta.2009.01.039http://doi.org/10.1016/j.electacta.2009.01.039 .
Deepa M, Sharma N, Agnihotry S A, Singh S, Lal T, Chandra R. Solid State Ionics , 2002 . 152 253 - 258.
Zhai W, Zhu H J, Wang L, Liu X, Yang H. Electrochimica Acta , 2014 . 133 623 - 630 . DOI:10.1016/j.electacta.2014.04.076http://doi.org/10.1016/j.electacta.2014.04.076 .
Chen G H, Zhang F, Zhou Z M, Li J R, Tang Y B. Adv Energy Mater , 2018 . 8 ( 25 ): 1801219 DOI:10.1002/aenm.201801219http://doi.org/10.1002/aenm.201801219 .
Dyartanti E R, Purwanto A, Widiasa I N, Susanto H. Membranes , 2018 . 8 ( 3 ): 36 DOI:10.3390/membranes8030036http://doi.org/10.3390/membranes8030036 .
Chen L, Li Y, Li S P, Fan L Z, Nan C W, Goodenough J B. Nano Energy , 2018 . 46 176 - 184 . DOI:10.1016/j.nanoen.2017.12.037http://doi.org/10.1016/j.nanoen.2017.12.037 .
Gupta S, Singh P K, Bhattacharya B. Ionics , 2017 . 24 ( 1 ): 163 - 167.
Ileperuma O A, Dissanayake M A K L, Somasunderam S, Bandara L R A K. Sol Energy Mater Sol Cells , 2004 . 84 ( 1 ): 117 - 124 . DOI:10.1016/j.solmat.2004.02.040http://doi.org/10.1016/j.solmat.2004.02.040 .
Xue Z G, He D, Xie X L. J Mater Chem A , 2015 . 3 ( 38 ): 19218 - 19253 . DOI:10.1039/C5TA03471Jhttp://doi.org/10.1039/C5TA03471J .
Chang T H, Lu H C, Lee M H, Kao S Y, Ho K C. Sol Energy Mater Sol Cells , 2018 . 177 75 - 81 . DOI:10.1016/j.solmat.2017.05.004http://doi.org/10.1016/j.solmat.2017.05.004 .
Daigle J C, V A, Hovington P, Gagnon C, Hamel-Pâquet J, Verreault S, Turcotte N, Clément D, Guerfi A, Zaghib K. J Power Sources , 2015 . 279 372 - 383 . DOI:10.1016/j.jpowsour.2014.12.061http://doi.org/10.1016/j.jpowsour.2014.12.061 .
Fu G, He R, Kyu T. Curr Opin Chem Eng , 2018 . 19 124 - 130 . DOI:10.1016/j.coche.2018.02.007http://doi.org/10.1016/j.coche.2018.02.007 .
Wang E, Hasheminasab A, Guo Y, Soucek M D, Cakmak M. Polymer , 2018 . 153 241 - 249 . DOI:10.1016/j.polymer.2018.02.040http://doi.org/10.1016/j.polymer.2018.02.040 .
Li W, Pang Y, Liu J, Liu G, Wang Y, Xia Y. RSC Adv , 2017 . 7 ( 38 ): 23494 - 23501 . DOI:10.1039/C7RA02603Jhttp://doi.org/10.1039/C7RA02603J .
Ben Y H, Garcia C O, Lago N, Devaraj S, Armand M. Electrochimica Acta , 2016 . 220 587 - 594 . DOI:10.1016/j.electacta.2016.10.122http://doi.org/10.1016/j.electacta.2016.10.122 .
Khurana R, Schaefer J L, Archer L A, Coates G W. J Am Chem Soc , 2014 . 136 ( 20 ): 7395 - 7402 . DOI:10.1021/ja502133jhttp://doi.org/10.1021/ja502133j .
Lewandowski A, Zajder M, Frackowiak E, Beguin F. Electrochimica Acta , 2001 . 46 ( 18 ): 2777 - 2780 . DOI:10.1016/S0013-4686(01)00496-0http://doi.org/10.1016/S0013-4686(01)00496-0 .
Zhao Y R, Wu C, Peng G, Chen X T, Yao X Y, Bai Y, Wu F, Chen S J, Xu X X. J Power Sources , 2016 . 301 47 - 53 . DOI:10.1016/j.jpowsour.2015.09.111http://doi.org/10.1016/j.jpowsour.2015.09.111 .
Liao Y H, Li X P, Fu C H, Xu R, Rao M M, Zhou L, Hu S J, Li W S. J Power Sources , 2011 . 196 ( 16 ): 6723 - 6728 . DOI:10.1016/j.jpowsour.2010.11.036http://doi.org/10.1016/j.jpowsour.2010.11.036 .
López B C R, Beltramo P J, Liu Y, Choi S M, Lee M J. Polymer , 2016 . 87 300 - 307 . DOI:10.1016/j.polymer.2016.02.008http://doi.org/10.1016/j.polymer.2016.02.008 .
Yarmolenko O V, Khatmullina K G, Tulibaeva G Z, Bogdanova L M, Shestakov A F. J Solid State Electrochem , 2012 . 16 ( 10 ): 3371 - 3381 . DOI:10.1007/s10008-012-1781-9http://doi.org/10.1007/s10008-012-1781-9 .
Fu G, Kyu T. Langmuir , 2017 . 33 ( 49 ): 13973 - 13981 . DOI:10.1021/acs.langmuir.7b03449http://doi.org/10.1021/acs.langmuir.7b03449 .
Goodenough J B, Kim Y. Chem Mater , 2010 . 22 ( 3 ): 587 - 603 . DOI:10.1021/cm901452zhttp://doi.org/10.1021/cm901452z .
Haregewoin A M, Wotango A S, Hwang B. Energy Environ Sci , 2016 . 9 ( 6 ): 1955 - 1988 . DOI:10.1039/C6EE00123Hhttp://doi.org/10.1039/C6EE00123H .
Bella F, Leftheriotis G, Griffini G, Syrrokostas G, Turri S, Grätzel M, Gerbaldi C. Adv Funct Mater , 2016 . 26 ( 7 ): 1127 - 1137 . DOI:10.1002/adfm.201503762http://doi.org/10.1002/adfm.201503762 .
Chen W Y, Zhu C Z, Guo L, Yan M Y,Wu L L,Zhu B, Qi C J, Liu S Y, Zhang H, Peng Y. J Mater Chem C , 2013 . 13 1 - 8 . DOI:10.1039/C9TC00621D.http://doi.org/10.1039/C9TC00621D. .
0
浏览量
61
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构