浏览全部资源
扫码关注微信
1.清华大学化学系 北京 100084
2.东华大学化学化工与生物工程学院 上海 201620
[ "隋晓锋,男,1983年生. 研究员/博士生导师,东华大学生态纺织教育部重点实验室副主任. 2012年在荷兰特文特大学获博士学位;2012 ~ 2013年在荷兰阿克苏诺贝尔公司任职研究员;2014年在荷兰内梅亨大学任职博士后;2014年11月加入东华大学化学化工与生物工程学院. 入选第十二批国家青年特聘专家计划. 主要研究方向为生物基功能材料,包括天然高分子衍生化制备可降解水凝胶,再生纤维素/甲壳素/木质素纳米材料稳定乳液制备功能微胶囊,纤维素纳米线制备柔性气凝胶,纺织品功能整理(清洁染色、超双疏、阻燃、抗菌)等" ]
[ "危岩,男,1957年生. 北京大学本科和硕士(1977 ~ 1981年)、纽约市立大学博士(1986年)、MIT博士后(1986 ~ 1987年),Drexel大学助理教授(1987年)、杜邦冠名副教授(1991年)、正教授(1995年)和瓦格納讲席教授(2004年). 曾获国家杰青基金(1998年)和教育部长江学者讲座教授(2005年)称号. 已发表学术论文1085篇(SCI引用40800余次,H指数98). 2009年底全职加盟清华,主要研究方向为纳米高分子材料及其在生物医学、能源、水处理和3-D打印技术中的应用. 2014至2018年每年被爱思唯尔和汤姆森路透列为全球最高被引用的科学家之一. 2018年被聘为国家自然科学基金委基础科学中心“分子聚集发光”项目的骨干科学家" ]
纸质出版日期:2020-8,
网络出版日期:2020-7-16,
收稿日期:2020-5-25,
修回日期:2020-6-22,
扫 描 看 全 文
胡丹宁, 孙亚飞, 陶磊, 袁金颖, 隋晓锋, 危岩. 具有环境响应性的纤维素基水凝胶[J]. 高分子学报, 2020,51(8):880-889.
Dan-ning Hu, Ya-fei Sun, Lei Tao, Jin-ying Yuan, Xiao-feng Sui, Yen Wei. Environmentally Responsive Hydrogels Based on Cellulose[J]. Acta Polymerica Sinica, 2020,51(8):880-889.
胡丹宁, 孙亚飞, 陶磊, 袁金颖, 隋晓锋, 危岩. 具有环境响应性的纤维素基水凝胶[J]. 高分子学报, 2020,51(8):880-889. DOI: 10.11777/j.issn1000-3304.2020.20131.
Dan-ning Hu, Ya-fei Sun, Lei Tao, Jin-ying Yuan, Xiao-feng Sui, Yen Wei. Environmentally Responsive Hydrogels Based on Cellulose[J]. Acta Polymerica Sinica, 2020,51(8):880-889. DOI: 10.11777/j.issn1000-3304.2020.20131.
随着对可再生资源开发利用的逐渐重视,基于纤维素环境响应型水凝胶结构设计及其响应性能的研究备受关注. 环境响应纤维素基水凝胶不仅具有良好的生物相容性和生物可降解性,还表现出对环境因素特定的检出识别能力及明显响应性,拓展了水凝胶材料在生物医用、仿生智能材料等领域的应用. 本综述首先从环境响应型纤维素水凝胶材料的结构设计出发,以交联方式分类简要介绍了纤维素基水凝胶的合成方法,具体包括物理交联、化学交联和其他交联方式等. 接着,从水凝胶功能性入手,重点介绍了以一种或多种化学信号、物理信号为刺激源响应的纤维素基水凝胶材料;并以药物载体、形状记忆材料和伤口敷料等方面研究成果为例,阐述了环境响应型纤维素基水凝胶的相关应用,以及其在智能软体机器人和环保生物传感器等领域的巨大应用潜力.
With the emphasis on the development and utilization of renewable energy
environmentally responsive hydrogels based on cellulose have attracted much attention with their structure design and response performance. Besides the good biocompatiblity and biodegradablity
cellulose-based environmentally responsive hydrogels show excellent abilities in detection
recognition and response behaviors to environmental and biomedical relevant stimuli
which expands the applications of these hydrogels as biomedical smart materials and in other fields. In this article
we summarized the design and applications of environmentally responsive hydrogels
where cellulose could work as the cross-linkage in the 3D network or the nanofillers to improve properties
especially mechanical properties of hydrogels. Classified by crosslinking methods including physical or/and chemical crosslinking
the structural design and fabrications of these cellulose-based hydrogels were first discussed. Physical cellulose-based hydrogels constructed by supramolecular interactions usually exhibited more flexibility
and their responsiveness to external stimuli might depend on changes among the interactions in networks
while the chemical hydrogels showed responsiveness due to the cellulose skeleton mostly like pH responsive carboxymethyl cellulose. Moreover
focusing on their properties and functions
several types of cellulose-based hydrogels and their responses to chemical
physical and multi-stimuli were described
such as pH responsive
redox responsive
CO
2
responsive and temperature responsive hydrogels. Taking some biomedical researches as examples
it was expounded in this paper that the environmentally responsive hydrogels based on cellulose could be applied as drug delivery carriers
shape memory devices and wound dressing
etc
. To broaden the use of environmentally responsive cellulose-based hydrogels
it’s of great importance to design the hydrogel networks with multiple responsiveness and to improve the speed and sensitivity of the response process. With the development of artificial intelligence
it’s believed that environmentally responsive cellulose-based hydrogels will have great potential in applications for 3D printing
electronic skins
intelligent soft robots and so on in the future.
纤维素水凝胶环境响应刺激响应智能材料
CelluloseHydrogelsEnvironmentally responsiveStimuli-responsiveSmart materials
Wang S, Lu A, Zhang L N. Prog Polym Sci , 2016 . 53 169 - 206 . DOI:10.1016/j.progpolymsci.2015.07.003http://doi.org/10.1016/j.progpolymsci.2015.07.003 .
Cai J, Zhang L N. Macromol Biosci , 2005 . 5 ( 6 ): 539 - 548 . DOI:10.1002/mabi.200400222http://doi.org/10.1002/mabi.200400222 .
Wu J, Zhang J, Zhang H, He J S, Ren Q, Guo M L. Biomacromolecules , 2004 . 5 ( 2 ): 266 - 268 . DOI:10.1021/bm034398dhttp://doi.org/10.1021/bm034398d .
Li L, Lin Z B, Yang X, Wan Z Z, Cui S X. Chin Sci Bull , 2009 . 54 ( 9 ): 1622 - 1625 . DOI:10.1007/S11434-009-0207-2http://doi.org/10.1007/S11434-009-0207-2 .
Duan Bo(段博), Tu Hu(涂虎), Zhang Lina(张俐娜). Acta Polymerica Sinica(高分子学报) , 2020 . 51 ( 1 ): 66 - 86 . DOI:10.11777/j.issn1000-3304.2020.19160http://doi.org/10.11777/j.issn1000-3304.2020.19160 .
Yan L F, Shuai Q, Gong X L, Gu Q, Yu H Q. Clean Soil Air Water , 2009 . 37 ( 4-5 ): 392 - 398 . DOI:10.1002/clen.200900006http://doi.org/10.1002/clen.200900006 .
Zhou J P, Chang C Y, Zhang R P, Zhang L N. Macromol Biosci , 2007 . 7 ( 6 ): 804 - 809 . DOI:10.1002/mabi.200700007http://doi.org/10.1002/mabi.200700007 .
Chang C Y, Lue A, Zhang L N. Macromol Chem Phys , 2008 . 209 ( 12 ): 1266 - 1273 . DOI:10.1002/macp.200800161http://doi.org/10.1002/macp.200800161 .
Kanafi N M, Rahman N A, Rosdi N H. Mater Today Proc , 2019 . 7 721 - 731 . DOI:10.1016/j.matpr.2018.12.067http://doi.org/10.1016/j.matpr.2018.12.067 .
Du W B, Deng A M, Guo J, Chen J, Li H M, Gao Y. Carbohydr Polym , 2019 . 223 115084 DOI:10.1016/j.carbpol.2019.115084http://doi.org/10.1016/j.carbpol.2019.115084 .
Yamashita S, Hiroki A, Taguchi M. Radiat Phys Chem , 2014 . 101 53 - 58 . DOI:10.1016/j.radphyschem.2014.04.004http://doi.org/10.1016/j.radphyschem.2014.04.004 .
Zeng Y, Li Y S, Liu G Q, Wei Y, Wu Y W, Tao L. ACS Appl Polym Mater , 2020 . 2 ( 2 ): 404 - 410 . DOI:10.1021/acsapm.9b00874http://doi.org/10.1021/acsapm.9b00874 .
Zhang Y L, Tao L, Li S X, Wei Y. Biomacromolecules , 2011 . 12 ( 8 ): 2894 -2901 . DOI:10.1021/bm200423fhttp://doi.org/10.1021/bm200423f .
Mredha M T I, Guo Y Z, Nonoyama T, Nakajima T, Kurokawa T, Gong J P. Adv Mater , 2018 . 30 1704937 DOI:10.1002/adma.201704937http://doi.org/10.1002/adma.201704937 .
Wang L, Du Y, Yuan Y, Mu R J, Gong J N, Ni Y S, Pang J, Wu C H. Int J Biol Macromol , 2018 . 113 285 - 293 . DOI:10.1016/j.ijbiomac.2018.02.083http://doi.org/10.1016/j.ijbiomac.2018.02.083 .
Li Y, Chen H M, Liu D, Wang W X, Liu Y, Zhou S B. ACS Appl Mater Inter , 2015 . 7 ( 23 ): 12988 - 12999 . DOI:10.1021/acsami.5b02940http://doi.org/10.1021/acsami.5b02940 .
Xiao C M, Gao Y K. J Appl Polym Sci , 2008 . 107 ( 3 ): 1568 - 1572 . DOI:10.1002/app.27203http://doi.org/10.1002/app.27203 .
Appel E A, Tibbitt M W, Greer J M, Fenton O S, Kreuels K, Anderson D G, Langer R. ACS Macro Lett , 2015 . 4 ( 8 ): 848 - 852 . DOI:10.1021/acsmacrolett.5b00416http://doi.org/10.1021/acsmacrolett.5b00416 .
Koetting M C, Peters J T, Steichen S D, Peppas N A. Mater Sci Eng R , 2015 . 93 1 - 49 . DOI:10.1016/j.mser.2015.04.001http://doi.org/10.1016/j.mser.2015.04.001 .
Zhao D, Huang J C, Zhong Y, Li K, Zhang L N, Cai J. Adv Funct Mater , 2016 . 26 ( 34 ): 6279 - 6287 . DOI:10.1002/adfm.201601645http://doi.org/10.1002/adfm.201601645 .
Ye D D, Yang P C, Lei X J, Zhang D H, Li L B, Chang C Y, Sun P C, Zhang L N. Chem Mater , 2018 . 30 ( 15 ): 5175 - 5183 . DOI:10.1021/acs.chemmater.8b01799http://doi.org/10.1021/acs.chemmater.8b01799 .
Sannino A, Pappada S, Giotta L, Valli L, Maffezzoli A. J Appl Polym Sci , 2007 . 106 ( 5 ): 3040 - 3050 . DOI:10.1002/app.25899http://doi.org/10.1002/app.25899 .
Chang C Y, He M, Zhou J P, Zhang L N. Macromolecules , 2011 . 44 ( 6 ): 1642 - 1648 . DOI:10.1021/ma102801fhttp://doi.org/10.1021/ma102801f .
Liu H C, Sui X F, Xu H, Zhang L P, Zhong Y, Mao Z P. Macromol Mater Eng , 2016 . 301 ( 6 ): 725 - 732 . DOI:10.1002/mame.201600042http://doi.org/10.1002/mame.201600042 .
Liu H C, Li C J, Wang B J, Sui X F, Wang L, Yan X L, Xu H, Zhang L P, Zhong Y, Mao Z P. Cellulose , 2018 . 25 ( 1 ): 559 - 571 . DOI:10.1007/s10570-017-1546-9http://doi.org/10.1007/s10570-017-1546-9 .
Chang C Y, Duan B, Cai J, Zhang L N. Eur Polym J , 2010 . 46 ( 1 ): 92 - 100 . DOI:10.1016/j.eurpolymj.2009.04.033http://doi.org/10.1016/j.eurpolymj.2009.04.033 .
Oechsle A L, Lewis L, Hamad W Y, Hatzikiriakos S G, MacLachlan M J. Chem Mater , 2018 . 30 ( 2 ): 376 - 385 . DOI:10.1021/acs.chemmater.7b03939http://doi.org/10.1021/acs.chemmater.7b03939 .
Peng H F, Ning X Y, Wei G, Wang S P, Dai G L, Ju A Q. Carbohydr Polym , 2018 . 195 349 - 355 . DOI:10.1016/j.carbpol.2018.04.119http://doi.org/10.1016/j.carbpol.2018.04.119 .
Dou H J, Yang W H, Tao K, Li W W, Sun K. Langmuir , 2010 . 26 ( 7 ): 5022 - 5027 . DOI:10.1021/la903667rhttp://doi.org/10.1021/la903667r .
Bouchemal K, Akaanygrah A, Dereuddrebosquet N, Martin L, Lievinlemoal V, Grand R L, Nicolas V, Gibellini D, Lembo D, Poues C, Koffi A, Ponchel G. Antimicrob Agents Chemother , 2015 . 59 ( 4 ): 2215 - 2222 . DOI:10.1128/AAC.03503-14http://doi.org/10.1128/AAC.03503-14 .
Davidsonrozenfeld G, Stricker L, Simke J, Fadeev M, Vazquezgonzalez M, Ravoo B J, Willner I. Polym Chem , 2019 . 10 ( 30 ): 4106 - 4115 . DOI:10.1039/C9PY00559Ehttp://doi.org/10.1039/C9PY00559E .
Jiang P, Chen S W, Lv L D, Ji H M, Li G, Jiang Z C, Wu Y Q. J Nanosci Nanotechnol , 2020 . 20 ( 3 ): 1799 - 1806 . DOI:10.1166/jnn.2020.17341http://doi.org/10.1166/jnn.2020.17341 .
Yang X F, Liu G Q, Peng L, Guo J H, Tao L, Yuan J Y, Chang C Y, Wei Y, Zhang L N. Adv Funct Mater , 2017 . 27 ( 40 ): 1703174 DOI:10.1002/adfm.201703174http://doi.org/10.1002/adfm.201703174 .
Liu H C, Rong L D, Wang B J, Xie R Y, Sui X F, Xu H, Zhang L P, Zhong Y, Mao Z P. Carbohydr Polym , 2017 . 176 299 - 306 . DOI:10.1016/j.carbpol.2017.08.085http://doi.org/10.1016/j.carbpol.2017.08.085 .
Dutta S, Samanta P, Dhara D. Int J Biol Macromol , 2016 . 87 92 - 100 . DOI:10.1016/j.ijbiomac.2016.02.042http://doi.org/10.1016/j.ijbiomac.2016.02.042 .
Liu P W, Mai C, Zhang K. ACS Sustain Chem Eng , 2017 . 5 ( 6 ): 5313 - 5319 . DOI:10.1021/acssuschemeng.7b00646http://doi.org/10.1021/acssuschemeng.7b00646 .
Yan Q, Yuan J Y, Zhang F B, Sui X F, Xie X M, Yin Y W, Wang S F, Wei Y. Biomacromolecules , 2009 . 10 ( 8 ): 2033 - 2042 . DOI:10.1021/bm801313qhttp://doi.org/10.1021/bm801313q .
Liu Y Y, Sui Y L, Liu C, Liu C Q, Wu M Y, Li B, Li Y M. Carbohydr Polym , 2018 . 188 27 - 36 . DOI:10.1016/j.carbpol.2018.01.093http://doi.org/10.1016/j.carbpol.2018.01.093 .
Maulvi F A, Lakdawala D H, Shaikh A A, Desai A R, Choksi H H, Vaidya R J, Ranch K M, Koli A R, Vyas B A, Shah D O. J Control Release , 2016 . 226 47 - 56 . DOI:10.1016/j.jconrel.2016.02.012http://doi.org/10.1016/j.jconrel.2016.02.012 .
Gao X Y, Cao Y, Song X F, Zhang Z, Zhuang X L, He C L, Chen X S. Macromol Biosci , 2014 . 14 ( 4 ): 565 - 575 . DOI:10.1002/mabi.201300384http://doi.org/10.1002/mabi.201300384 .
Chen Y, Ding D, Mao Z Q, He Y F, Hu Y, Wu W, Jiang X Q. Biomacromolecules , 2008 . 9 ( 10 ): 2609 - 2614 . DOI:10.1021/bm800484ehttp://doi.org/10.1021/bm800484e .
Chen Q M, Yu X W, Pei Z Q, Yang Y, Wei Y, Ji Y. Chem Sci , 2017 . 8 ( 1 ): 724 - 733 . DOI:10.1039/C6SC02855Ahttp://doi.org/10.1039/C6SC02855A .
Li K, Wei P D, Huang J C, Xu D D, Zhong Y, Hu L, Zhang L N, Cai J. ACS Sustain Chem Eng , 2019 . 7 ( 19 ): 15974 - 15982 . DOI:10.1021/acssuschemeng.9b02341http://doi.org/10.1021/acssuschemeng.9b02341 .
Li N, Chen G X, Chen W, Huang J H, Tian J F, Wan X F, He M H, Zhang H F. Carbohydr Polym , 2017 . 178 159 - 165 . DOI:10.1016/j.carbpol.2017.09.030http://doi.org/10.1016/j.carbpol.2017.09.030 .
Li Y S, Wang X, Fu Y N, Wei Y, Zhao L Y, Tao L. ACS Appl Mater Inter , 2018 . 10 ( 31 ): 26046 - 26055 . DOI:10.1021/acsami.8b08874http://doi.org/10.1021/acsami.8b08874 .
Zeng Linquan(曾林泉). Texide Dyeing and Finishing Journal(染整技术) , 2019 . 41 ( 7 ): 11 - 19 . DOI:10.3969/j.issn.1005-9350.2019.07.003http://doi.org/10.3969/j.issn.1005-9350.2019.07.003 .
Mao C Y, Xiang Y M, Liu X M, Cui Z D, Yang X J, Yeung K W K, Pan H B, Wang X B, Chu P K, Wu S L. ACS Nano , 2017 . 11 ( 9 ): 9010 - 9021 . DOI:10.1021/acsnano.7b03513http://doi.org/10.1021/acsnano.7b03513 .
Xie J B, Hsieh Y L. J Appl Polym Sci , 2003 . 89 ( 4 ): 999 - 1006 . DOI:10.1002/app.12206http://doi.org/10.1002/app.12206 .
Liu Y J, Cao W T, Ma M G, Wan P B. ACS Appl Mater Interfaces , 2017 . 9 ( 30 ): 25559 - 25570 . DOI:10.1021/acsami.7b07639http://doi.org/10.1021/acsami.7b07639 .
Zhang Y L, Gao C J, Li X L, Xu C, Zhang Y, Sun Z M, Liu Y, Gao J P. Carbohydr Polym , 2014 . 101 171 - 178 . DOI:10.1016/j.carbpol.2013.09.001http://doi.org/10.1016/j.carbpol.2013.09.001 .
Shi X N, Tang J, Wang A Q. J Appl Polym Sci , 2015 . 132 ( 23 ): 42027 DOI:10.1002/app.42027http://doi.org/10.1002/app.42027 .
Zhu Y, Hu J L, Luo H S, Young R J, Deng L B, Zhang S, Fan Y, Ye G D. Soft Matter , 2012 . 8 ( 8 ): 2509 - 2517 . DOI:10.1039/c2sm07035ahttp://doi.org/10.1039/c2sm07035a .
Lu F, Chen Y N, Liu N, Cao Y Z, Xu L X, Wei Y, Feng L. RSC Adv , 2014 . 4 ( 61 ): 32544 - 32548 . DOI:10.1039/C4RA04464Ahttp://doi.org/10.1039/C4RA04464A .
0
浏览量
144
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构